GRID INTERSECTION GRAPHS AND BOXICITY

被引:28
|
作者
BELLANTONI, S
HARTMAN, IB
PRZYTYCKA, T
WHITESIDES, S
机构
[1] UNIV TORONTO,DEPT COMP SCI,TORONTO M5S 1A4,ONTARIO,CANADA
[2] IBM ISRAEL,SCI & TECHNOL,IL-32000 HAIFA,ISRAEL
[3] UNIV BRITISH COLUMBIA,DEPT COMP SCI,VANCOUVER V6T 1W5,BC,CANADA
[4] MCGILL UNIV,DEPT COMP SCI,MONTREAL H3A 2K6,QUEBEC,CANADA
关键词
D O I
10.1016/0012-365X(93)90354-V
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A graph has boxicity k if k is the smallest integer such that G is an intersection graph of k-dimensional boxes in a k-dimensional space (where the sides of the boxes are parallel to the coordinate axis). A graph has grid dimension k if k is the smallest integer such that G is an intersection graph of k-dimensional boxes (parallel to the coordinate axis) in a (k + 1)-dimensional space. We prove that all bipartite graphs with boxicity two, have grid dimensions one, that is, they can be represented as intersection graphs of horizontal and vertical intervals in the plane. We also introduce some inequalities for the grid dimension of a graph, and discuss extremal graphs with large grid dimensions. © 1993.
引用
收藏
页码:41 / 49
页数:9
相关论文
共 50 条
  • [41] CHARACTERIZATION OF THE GRAPHS WITH BOXICITY LESS-THAN-OR-EQUAL-TO 2
    QUEST, M
    WEGNER, G
    DISCRETE MATHEMATICS, 1990, 81 (02) : 187 - 192
  • [42] A Constant Factor Approximation Algorithm for Boxicity of Circular Arc Graphs
    Adiga, Abhijin
    Babu, Jasine
    Chandran, L. Sunil
    ALGORITHMS AND DATA STRUCTURES, 2011, 6844 : 13 - +
  • [43] A constant factor approximation algorithm for boxicity of circular arc graphs
    Adiga, Abhijin
    Babu, Jasine
    Chandran, L. Sunil
    DISCRETE APPLIED MATHEMATICS, 2014, 178 : 1 - 18
  • [44] Some properties of edge intersection graphs of single-bend paths on a grid
    Asinowski, A.
    Ries, B.
    DISCRETE MATHEMATICS, 2012, 312 (02) : 427 - 440
  • [45] Maximum Cliques in Graphs with Small Intersection Number and Random Intersection Graphs
    Nikoletseas, Sotiris
    Raptopoulos, Christoforos
    Spirakis, Paul G.
    MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE 2012, 2012, 7464 : 728 - 739
  • [46] Maximum cliques in graphs with small intersection number and random intersection graphs
    Nikoletseas, Sotiris E.
    Raptopoulos, Christoforos L.
    Spirakis, Paul G.
    COMPUTER SCIENCE REVIEW, 2021, 39
  • [47] On the hyperbolicity of bipartite graphs and intersection graphs
    Coudert, David
    Ducoffe, Guillaume
    DISCRETE APPLIED MATHEMATICS, 2016, 214 : 187 - 195
  • [48] INTERSECTION GRAPHS OF CONCATENABLE SUBTREES OF GRAPHS
    GAVRIL, F
    URRUTIA, J
    DISCRETE APPLIED MATHEMATICS, 1994, 52 (02) : 195 - 209
  • [49] Chordal graphs as intersection graphs of pseudosegments
    Dangelmayr, Cornelia
    Felsner, Stefan
    GRAPH DRAWING, 2007, 4372 : 208 - +
  • [50] COMPARABILITY-GRAPHS AND INTERSECTION GRAPHS
    GOLUMBIC, MC
    ROTEM, D
    URRUTIA, J
    DISCRETE MATHEMATICS, 1983, 43 (01) : 37 - 46