QUANTUM FUNCTION ALGEBRA AT ROOTS OF 1

被引:86
作者
DECONCINI, C [1 ]
LYUBASHENKO, V [1 ]
机构
[1] KIEV POLYTECH INST,DEPT MATH METHODS SYST ANAL,KIEV 252056,UKRAINE
关键词
D O I
10.1006/aima.1994.1071
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce a form of the quantum function algebra on a Drinfeld-Jimbo quantum group over the ring Z[q, q-1]. Specializing q to a root of 1, we show that over the cyclotomic field this algebra is a projective module over its central sub-algebra, which is the usual coordinate algebra of the group. We study the induced Poisson-Lie structure of the group. A bundle of algebras on a complex simply connected Lie group with hamiltonian flows in the bundle is constructed. Some representations of the quantum function algebra in a root of 1 are constructed as an application. An estimate of the dimension of an arbitrary representation is given. (C) 1994 Academic Press, Inc.
引用
收藏
页码:205 / 262
页数:58
相关论文
共 30 条
[1]   REPRESENTATIONS OF QUANTUM ALGEBRAS [J].
ANDERSEN, HH ;
POLO, P ;
KEXIN, W .
INVENTIONES MATHEMATICAE, 1991, 104 (01) :1-59
[2]   ON AZUMAYA ALGEBRAS AND FINITE DIMENSIONAL REPRESENTATIONS OF RINGS [J].
ARTIN, M .
JOURNAL OF ALGEBRA, 1969, 11 (04) :532-&
[3]  
De Concini C., 1992, J AM MATH SOC, V5, P151, DOI DOI 10.2307/2152754
[4]  
DECONCINI C, 1990, PROG MATH, V92, P471
[5]  
DECONCINI C, SOME QUANTUM ANALOGU
[6]  
Drinfel'd V. G., 1987, PROC INT CONG MATH, V1, P798
[7]  
DRINFELD VG, 1985, DOKL AKAD NAUK SSSR, V32, P254
[8]  
DRINFELD VG, 1986, UNPUB
[9]  
ENRIQUEZ B, INTEGRITY INTEGRAL C
[10]  
ENRIQUEZ B, CTR ALGEBRES COORDON