SUPERCONVERGENCE AND EXTRAPOLATION FOR MIXED FINITE-ELEMENT METHODS ON RECTANGULAR DOMAINS

被引:1
作者
WANG, JP
机构
关键词
2ND-ORDER ELLIPTIC EQUATION; FINITE ELEMENT METHOD; ASYMPTOTIC EXPANSION; SUPERCONVERGENCE; RICHARDSON EXTRAPOLATION;
D O I
10.2307/2008392
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Asymptotic expansions for the RT (Raviart-Thomas) mixed finite element approximation by the lowest-order rectangular element associated with a second-order elliptic equation on a rectangular domain are derived. Super-convergence for the vector field along the Gauss lines is obtained as a result of the expansion. A procedure of postprocessed extrapolation is present for the scalar field, as well as procedures of pure Richardson extrapolation for both the vector and the scalar fields.
引用
收藏
页码:477 / 503
页数:27
相关论文
共 22 条
[11]  
DurSSn R., 1988, RAIRO ANAL NUMER, V22, P371
[12]  
EWING RE, IN PRESS SIAM J NUME
[13]  
FALK RS, 1980, RAIRO-ANAL NUMER-NUM, V14, P249
[14]  
FORTIN M, 1977, RAIRO-ANAL NUMER-NUM, V11, P341
[15]  
Grisvard P., 1985, ELLIPTIC PROBLEMS NO, V24
[16]  
LIN Q, 1984, IMS15 CHENGD BRANCH
[17]  
LIN Q, 1983, 6TH P INT C COMP MAT
[18]  
LIN Q, 1984, J COMPUT MATH, V2, P361
[19]  
Lin Q., 1985, J COMPUT MATH, V3, P115
[20]  
Lin Q., 1983, J COMPUT MATH, V1, P376