OPTIMAL ERROR-BOUNDS FOR THE DERIVATIVES OF 2 POINT HERMITE INTERPOLATION

被引:7
作者
AGARWAL, RP
WONG, PJY
机构
[1] Department of Mathematics, National University of Singapore Kent Ridge, Singapore
关键词
D O I
10.1016/0898-1221(91)90048-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For the derivatives of the Hermite polynomial interpolation of a function on the interval [a, b] we obtain best possible uniform error estimates. For this, a new representation for the error function is developed.
引用
收藏
页码:21 / 35
页数:15
相关论文
共 10 条
[1]  
Agarwal R.P., 1986, BOUND VALUE PROBL
[2]  
AGARWAL RP, IN PRESS NONLINEAR A
[3]  
AGARWAL RP, 1983, INT SER NUMER MATH, V64, P371
[4]  
[Anonymous], 1973, SPLINE ANAL
[5]   HERMITE INTERPOLATION ERRORS FOR DERIVATIVES [J].
BIRKHOFF, G ;
PRIVER, A .
JOURNAL OF MATHEMATICS AND PHYSICS, 1967, 46 (04) :440-&
[6]   NUMERICAL METHODS OF HIGH-ORDER ACCURACY FOR NONLINEAR BOUNDARY VALUE PROBLEMS .I. 1 DIMENSIONAL PROBLEM [J].
CIARLET, PG ;
SCHULTZ, MH ;
VARGA, RS .
NUMERISCHE MATHEMATIK, 1967, 9 (05) :394-&
[7]  
Hall CA., 1968, J APPROX THEORY, V1, P209, DOI [10.1016/0021-9045(68)90025-7, DOI 10.1016/0021-9045(68)90025-7]
[8]   BEST ERROR-BOUNDS FOR DERIVATIVES IN 2 POINT BIRKHOFF INTERPOLATION PROBLEMS [J].
VARMA, AK ;
HOWELL, G .
JOURNAL OF APPROXIMATION THEORY, 1983, 38 (03) :258-268
[9]   OPTIMAL ERROR-BOUNDS FOR HERMITE INTERPOLATION [J].
VARMA, AK ;
KATSIFARAKIS, KL .
JOURNAL OF APPROXIMATION THEORY, 1987, 51 (04) :350-359
[10]   EXPLICIT ERROR-ESTIMATES FOR QUINTIC AND BIQUINTIC SPLINE INTERPOLATION [J].
WONG, PJY ;
AGARWAL, RP .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1989, 18 (08) :701-722