A NOTE ON REARRANGEMENTS, SPECTRAL CONCENTRATION, AND THE ZERO-ORDER PROLATE SPHEROIDAL WAVE-FUNCTION

被引:13
作者
DONOHO, DL
STARK, PB
机构
[1] Department of Statistics, University of California, Berkeley, Berkeley, CA
关键词
SYMMETRICAL DECREASING REARRANGEMENT; UNCERTAINTY PRINCIPLE; SMOOTHING; SPARSITY CONSTRAINTS; PROLATE SPHEROIDAL WAVE-FUNCTIONS;
D O I
10.1109/18.179370
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
If the measure of the support of a function f is small, its symmetric decreasing rearrangement f* is more nearly bandlimited to low frequencies than f, while their norms are equal. An immediate corollary is that the time-limited zero-order prolate spheroidal wavefunction is the extremal function for a new optimization problem involving time- and bandlimiting. The result has an application in exploration seismology.
引用
收藏
页码:257 / 260
页数:4
相关论文
共 18 条
[1]   UNCERTAINTY PRINCIPLES AND SIGNAL RECOVERY [J].
DONOHO, DL ;
STARK, PB .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1989, 49 (03) :906-931
[2]   COMBINATORIAL INEQUALITIES AND SMOOTHNESS OF FUNCTIONS [J].
GARSIA, AM .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 82 (02) :157-170
[3]  
Hardy G.H., 1948, J LOND MATH SOC, V23, P163
[4]  
Hardy GH, 1931, J LOND MATH SOC, VS1-6, P3, DOI 10.1112/jlms/s1-6.1.3
[5]   ON REARRANGEMENT AND WEIGHT INEQUALITIES FOR THE FOURIER-TRANSFORM [J].
JURKAT, WB ;
SAMPSON, G .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1984, 33 (02) :257-270
[6]   ON MAXIMAL REARRANGEMENT INEQUALITIES FOR THE FOURIER-TRANSFORM [J].
JURKAT, WB ;
SAMPSON, G .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1984, 282 (02) :625-643
[7]   SHARP CONSTANTS IN THE HARDY-LITTLEWOOD-SOBOLEV AND RELATED INEQUALITIES [J].
LIEB, EH .
ANNALS OF MATHEMATICS, 1983, 118 (02) :349-374
[8]   NOTE ON REARRANGEMENTS OF FOURIER COEFFICIENTS [J].
MONTGOMERY, HL .
ANNALES DE L INSTITUT FOURIER, 1976, 26 (02) :29-34
[9]   RECOVERY OF THE ACOUSTIC-IMPEDANCE FROM REFLECTION SEISMOGRAMS [J].
OLDENBURG, DW ;
SCHEUER, T ;
LEVY, S .
GEOPHYSICS, 1983, 48 (10) :1318-1337
[10]  
Riesz F., 1930, J LONDON MATH SOC, V0, P162, DOI [10.1112/jlms/s1-5.3.162, DOI 10.1112/JLMS/S1-5.3.162]