Distributed feedback quantum cascade lasers operating in continuous-wave mode at lambda approximate to 7.6 mu m

被引:3
作者
Zhang, Jinchuan [1 ,2 ]
Wang, Lijun [1 ]
Liu, Wanfeng [1 ]
Liu, Fengqi [1 ]
Zhao, Lihua [1 ]
Zhai, Shenqiang [1 ]
Liu, Junqi [1 ]
Wang, Zhanguo [1 ]
机构
[1] Chinese Acad Sci, Inst Semicond, Key Lab Semicond Mat Sci, Beijing 100083, Peoples R China
[2] Tsinghua Univ, Dept Elect Engn, Beijing 100084, Peoples R China
基金
中国国家自然科学基金; 国家高技术研究发展计划(863计划);
关键词
quantum cascade laser; distributed feedback; holographic lithography;
D O I
10.1088/1674-4926/33/2/024005
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Distributed feedback (DFB) quantum cascade lasers (QCLs) in continuous-wave (CW) mode emitting at lambda approximate to 7.6 mu m are presented. Holographic lithography was used to fabricate the first-order distributed feedback grating. For a high-reflectivity-coated QCL with 14.5-mu m-wide and 3-mm-long cavity, CW output powers of 300 mW at 85 K and still 10 mW at 270 K are obtained. Single-mode emission with a side-mode suppression ratio (SMSR) of about 30 dB and a wide tuning range of similar to 300 nm in the temperature range from 85 to 280 K is observed.
引用
收藏
页数:3
相关论文
共 11 条
[1]   Sub-ppbv nitric oxide concentration measurements using cw thermoelectrically cooled quantum cascade laser-based integrated cavity output spectroscopy [J].
Bakhirkin, YA ;
Kosterev, AA ;
Curl, RF ;
Tittel, FK ;
Yarekha, DA ;
Hvozdara, L ;
Giovannini, M ;
Faist, J .
APPLIED PHYSICS B-LASERS AND OPTICS, 2006, 82 (01) :149-154
[2]   High-power, continuous-wave operation of distributed-feedback quantum-cascade lasers at λ∼7.8 μm [J].
Darvish, S. R. ;
Zhang, W. ;
Evans, A. ;
Yu, J. S. ;
Slivken, S. ;
Razeghi, M. .
APPLIED PHYSICS LETTERS, 2006, 89 (25)
[3]   Room-temperature, high-power, and continuous-wave operation of distributed-feedback quantum-cascade lasers at λ∼9.6 μm [J].
Darvish, S. R. ;
Slivken, S. ;
Evans, A. ;
Yu, J. S. ;
Razeghi, M. .
APPLIED PHYSICS LETTERS, 2006, 88 (20)
[4]   Distributed feedback quantum cascade lasers [J].
Faist, J ;
Gmachl, C ;
Capasso, F ;
Sirtori, C ;
Sivco, DL ;
Baillargeon, JN ;
Cho, AY .
APPLIED PHYSICS LETTERS, 1997, 70 (20) :2670-2672
[5]   Chemical sensors based on quantum cascade lasers [J].
Kosterev, AA ;
Tittel, FK .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 2002, 38 (06) :582-591
[6]   2.4 W room temperature continuous wave operation of distributed feedback quantum cascade lasers [J].
Lu, Q. Y. ;
Bai, Y. ;
Bandyopadhyay, N. ;
Slivken, S. ;
Razeghi, M. .
APPLIED PHYSICS LETTERS, 2011, 98 (18)
[7]   Room-temperature continuous wave operation of distributed feedback quantum cascade lasers with watt-level power output [J].
Lu, Q. Y. ;
Bai, Y. ;
Bandyopadhyay, N. ;
Slivken, S. ;
Razeghi, M. .
APPLIED PHYSICS LETTERS, 2010, 97 (23)
[8]   Sensitive absorption spectroscopy with a room-temperature distributed-feedback quantum-cascade laser [J].
Namjou, K ;
Cai, S ;
Whittaker, EA ;
Faist, J ;
Gmachl, C ;
Capasso, F ;
Sivco, DL ;
Cho, AY .
OPTICS LETTERS, 1998, 23 (03) :219-221
[9]   Surface-emitting distributed feedback quantum-cascade lasers [J].
Schrenk, W ;
Finger, N ;
Gianordoli, S ;
Hvozdara, L ;
Strasser, G ;
Gornik, E .
APPLIED PHYSICS LETTERS, 2000, 77 (14) :2086-2088
[10]  
Wittmann A, 2009, IEEE PHOTONIC TECH L, V21, P12