ON TRIGONOMETRIC SPLINE INTERPOLATION

被引:6
|
作者
SCHOENBERG, IJ
机构
来源
JOURNAL OF MATHEMATICS AND MECHANICS | 1964年 / 13卷 / 05期
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:795 / &
相关论文
共 50 条
  • [21] TRIGONOMETRIC INTERPOLATION
    BARON, W
    COMPUTING, 1976, 16 (04) : 319 - 328
  • [22] ON TRIGONOMETRIC INTERPOLATION
    ZARANTONELLO, EH
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1952, 3 (05) : 770 - 782
  • [23] Manipulator Trajectory Planning Based on the Algebraic-Trigonometric Hermite Blended Interpolation Spline
    Su, Benyue
    Zou, Liping
    2012 INTERNATIONAL WORKSHOP ON INFORMATION AND ELECTRONICS ENGINEERING, 2012, 29 : 2093 - 2097
  • [24] Adaptive image interpolation technique based on cubic trigonometric B-spline representation
    Abbas, Samreen
    Irshad, Misbah
    Hussain, Malik Zawwar
    IET IMAGE PROCESSING, 2018, 12 (05) : 769 - 777
  • [25] Solving Boussinesq Equation Using Quintic B-spline and Quintic Trigonometric B-spline Interpolation Methods
    Zakaria, Nur Fateha
    Abu Hassan, Nuraini
    Abd Hamid, Nur Nadiah
    Abd Majid, Ahmad
    Ismail, Ahmad Izani Md.
    4TH INTERNATIONAL CONFERENCE ON MATHEMATICAL SCIENCES (ICMS4): MATHEMATICAL SCIENCES: CHAMPIONING THE WAY IN A PROBLEM BASED AND DATA DRIVEN SOCIETY, 2017, 1830
  • [26] Spline and fractal spline interpolation
    Somogyi, Ildiko
    Soos, Anna
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2015, 60 (02): : 193 - 199
  • [27] Constrained for G1 Cubic Trigonometric Spline Curve Interpolation for Positive Data Set
    Munir, Nur Azliana Azlin
    Hadi, Normi Abdul
    Nasir, Mohd Agos Salim
    MALAYSIAN JOURNAL OF FUNDAMENTAL AND APPLIED SCIENCES, 2022, 18 (03): : 324 - 332
  • [28] Cubic uniform trigonometric polynomial spline curve that can be adjusted totally or locally and its interpolation
    Xiong, Jian
    Guo, Qingwei
    Journal of Information and Computational Science, 2012, 9 (17): : 5153 - 5160
  • [29] Multiquadric trigonometric spline quasi-interpolation for numerical differentiation of noisy data: a stochastic perspective
    Gao, Wenwu
    Zhang, Ran
    NUMERICAL ALGORITHMS, 2018, 77 (01) : 243 - 259
  • [30] Multiquadric trigonometric spline quasi-interpolation for numerical differentiation of noisy data: a stochastic perspective
    Wenwu Gao
    Ran Zhang
    Numerical Algorithms, 2018, 77 : 243 - 259