THE 2-MATRIX MODEL AT FINITE N AND THE 2D TODA HIERARCHY

被引:0
作者
TU, MH [1 ]
SHAW, JC [1 ]
YEN, HC [1 ]
机构
[1] NATL CHIAO TUNG UNIV,DEPT APPL MATH,HSINCHU 300,TAIWAN
关键词
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We give a rigorous proof that the partition function of the standard hermitian two-matrix model at finite N is a tau-function of the 2d Toda hierarchy. The proof is based on the establishment of a characteristic bilinear relation for the associated Baker-Akhiezer functions, which we have explicitly constructed in terms of the orthogonal polynomials of the matrix model.
引用
收藏
页码:631 / 641
页数:11
相关论文
共 19 条
[1]   ONE-POINT FUNCTIONS OF LOOPS AND CONSTRAINT EQUATIONS OF THE MULTIMATRIX MODELS AT FINITE-N [J].
AHN, C ;
SHIGEMOTO, K .
PHYSICS LETTERS B, 1992, 285 (1-2) :42-48
[2]  
AHN C, 1991, PHYS LETT B, V63, P44
[3]   INTEGRABILITY IN RANDOM MATRIX MODELS [J].
ALVAREZGAUME, L ;
GOMEZ, C ;
LACKI, J .
PHYSICS LETTERS B, 1991, 253 (1-2) :56-62
[4]  
BESSIS D, 1979, COMMUN MATH PHYS, V69, P69
[5]   SCHWINGER-DYSON LOOP EQUATIONS FOR THE MULTIMATRIX CHAIN MODEL AT FINITE-N [J].
CHENG, YX .
PHYSICS LETTERS B, 1992, 289 (3-4) :327-334
[6]   A CLOSED FORMULATION OF LOOP EQUATIONS FOR THE 2-MATRIX MODEL [J].
CHENG, YX .
PHYSICS LETTERS B, 1992, 284 (3-4) :253-259
[7]   MATRIX MODELS OF 2-DIMENSIONAL GRAVITY AND TODA THEORY [J].
GERASIMOV, A ;
MARSHAKOV, A ;
MIRONOV, A ;
MOROZOV, A ;
ORLOV, A .
NUCLEAR PHYSICS B, 1991, 357 (2-3) :565-618
[8]  
Hirota R., 1980, LECT NOTES MATH, V515, P40
[9]   NONCRITICAL VIRASORO ALGEBRA OF THE D-LESS-THAN-1 MATRIX MODEL AND THE QUANTIZED STRING FIELD [J].
ITOYAMA, H ;
MATSUO, Y .
PHYSICS LETTERS B, 1991, 255 (02) :202-208
[10]   PLANAR APPROXIMATION .2. [J].
ITZYKSON, C ;
ZUBER, JB .
JOURNAL OF MATHEMATICAL PHYSICS, 1980, 21 (03) :411-421