Exact solutions for the double sinh-Gordon and generalized form of the double sinh-Gordon equations by using (G' / G)-expansion method

被引:17
作者
Kheiri, Hossein [1 ]
Jabbari, Azizeh [1 ]
机构
[1] Univ Tabriz, Fac Math Sci, Tabriz, Iran
来源
TURKISH JOURNAL OF PHYSICS | 2010年 / 34卷 / 02期
关键词
(G' / G)-expansion method; double sinh-Gordon equation; generalized form of the double sinh-Gordon equation; traveling wave solutions;
D O I
10.3906/fiz-0909-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, the (G'/ G)-expansion method is applied to seek traveling wave solutions to the double sinh-Gordon and the generalized form of the double sinh-Gordon equations. With the aid of a symbolic computation system, two types of more general traveling wave solutions (including hyperbolic functions and trigonometric functions) with free parameters are constructed. Solutions concerning solitary and periodic waves are also given by setting the two arbitrary parameters, involved in the traveling waves, as special values.
引用
收藏
页码:73 / 82
页数:10
相关论文
共 21 条
[11]  
Polyanin A. D., 2004, HDB NONLINEAR PARTIA
[12]   A direct method for solving sine-Gordon type equations [J].
Sirendaoreji ;
Jiong, S .
PHYSICS LETTERS A, 2002, 298 (2-3) :133-139
[13]   The (G′/G)-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics [J].
Wang, Mingliang ;
Li, Xiangzheng ;
Zhang, Jinliang .
PHYSICS LETTERS A, 2008, 372 (04) :417-423
[14]  
Wazwaz A. M., APPL MATH C IN PRESS
[15]   Exact solutions to the double sinh-Gordon equation by the Tanh method and a variable separated ODE method [J].
Wazwaz, AM .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2005, 50 (10-12) :1685-1696
[16]   The tanh method: exact solutions of the sine-Gordon and the sinh-Gordon equations [J].
Wazwaz, AM .
APPLIED MATHEMATICS AND COMPUTATION, 2005, 167 (02) :1196-1210
[17]   The tanh method for traveling wave solutions of nonlinear equations [J].
Wazwaz, AM .
APPLIED MATHEMATICS AND COMPUTATION, 2004, 154 (03) :713-723
[18]  
Wazwaz AM., 2002, PARTIAL DIFFERENTIAL
[19]   Discrete singular convolution for the sine-Gordon equation [J].
Wei, GW .
PHYSICA D-NONLINEAR PHENOMENA, 2000, 137 (3-4) :247-259
[20]  
Whitham GB., 1999, NEWYORK WILLEY, DOI [10.1002/9781118032954, DOI 10.1002/9781118032954]