Exact solutions for the double sinh-Gordon and generalized form of the double sinh-Gordon equations by using (G' / G)-expansion method

被引:17
作者
Kheiri, Hossein [1 ]
Jabbari, Azizeh [1 ]
机构
[1] Univ Tabriz, Fac Math Sci, Tabriz, Iran
来源
TURKISH JOURNAL OF PHYSICS | 2010年 / 34卷 / 02期
关键词
(G' / G)-expansion method; double sinh-Gordon equation; generalized form of the double sinh-Gordon equation; traveling wave solutions;
D O I
10.3906/fiz-0909-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, the (G'/ G)-expansion method is applied to seek traveling wave solutions to the double sinh-Gordon and the generalized form of the double sinh-Gordon equations. With the aid of a symbolic computation system, two types of more general traveling wave solutions (including hyperbolic functions and trigonometric functions) with free parameters are constructed. Solutions concerning solitary and periodic waves are also given by setting the two arbitrary parameters, involved in the traveling waves, as special values.
引用
收藏
页码:73 / 82
页数:10
相关论文
共 21 条
[1]   On the numerical solution of the sine-Gordon equation .1. Integrable discretizations and homoclinic manifolds [J].
Ablowitz, MJ ;
Herbst, BM ;
Schober, C .
JOURNAL OF COMPUTATIONAL PHYSICS, 1996, 126 (02) :299-314
[2]   Application of the (G′/G)-expansion method for nonlinear evolution equations [J].
Bekir, Ahmet .
PHYSICS LETTERS A, 2008, 372 (19) :3400-3406
[3]  
Fu ZT, 2004, Z NATURFORSCH A, V59, P933
[4]  
Infeld E., 2000, NONLINEAR WAVES SOLI
[5]  
Jia H., APPL MATH C IN PRESS
[6]  
KHEIRI H., 2010, ACTA U APULENSIS, V22, P185
[7]   SOLITARY WAVE SOLUTIONS OF NONLINEAR-WAVE EQUATIONS [J].
MALFLIET, W .
AMERICAN JOURNAL OF PHYSICS, 1992, 60 (07) :650-654
[8]  
Malfliet W., PHYSICA SCRIPTA, V54, P569
[9]  
Malfliet W., PHYSICA SCRIPTA, V54, P563
[10]   A MODEL UNIFIELD FIELD EQUATION [J].
PERRING, JK ;
SKYRME, THR .
NUCLEAR PHYSICS, 1962, 31 (04) :550-+