Fuzzy Stability of Euler-Lagrange Type Cubic Functional Equation: A Fixed Point Approach

被引:0
作者
Ravi, K. [1 ]
Murali, R. [1 ]
Thandapani, E. [2 ]
机构
[1] Sacred Heart Coll, Dept Math, Tirupattur 635601, Tamil Nadu, India
[2] Univ Madras, Ramanujam Inst Adv Study Math, Chennai 600005, Tamil Nadu, India
来源
JOURNAL OF INFORMATICS AND MATHEMATICAL SCIENCES | 2012年 / 4卷 / 01期
关键词
Fuzzy normed space; Cubic functional equation; Generalized Hyers-Ulam stability;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, the authors investigate the generalized Hyers-Ulam stability of Euler-Lagrange type Cubic functional equation 2af (x + ay)+ 2f (ax - y) = (a(3) + a)[f (x + y)+ f (x y)] +2(a(4) - 1)f (y) in fuzzy normed space by direct method and fixed point method, where a is fixed integer with a not equal 0, +/- 1.
引用
收藏
页码:65 / 75
页数:11
相关论文
共 50 条
[31]   Fuzzy stability of a mixed type functional equation [J].
Jin, Sun Sook ;
Lee, Yang-Hi .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2011,
[32]   Fixed points in generalized metric spaces and the stability of a cubic functional equation [J].
Cadariu, Liviu ;
Radu, Viorel .
FIXED POINT THEORY AND APPLICATIONS, VOL 7, 2007, 7 :53-+
[33]   On the stability of a cubic functional equation [J].
Abbas Najati ;
Choonkil Park .
Acta Mathematica Sinica, English Series, 2008, 24 :1953-1964
[34]   On the Stability of a Cubic Functional Equation [J].
Wiwatwanich, A. ;
Nakmahachalasint, P. .
THAI JOURNAL OF MATHEMATICS, 2008, 6 (03) :69-76
[35]   On the Stability of a Cubic Functional Equation [J].
Najati, Abbas ;
Park, Choonkil .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2008, 24 (12) :1953-1964
[36]   On the Stability of a Cubic Functional Equation [J].
Abbas NAJATI ;
Choonkil PARK .
ActaMathematicaSinica(EnglishSeries), 2008, 24 (12) :1953-1964
[37]   Stability Results in Intuitionistic Fuzzy Normed Spaces for a Cubic Functional Equation [J].
Mursaleen, M. ;
Ansari, Khursheed J. .
APPLIED MATHEMATICS & INFORMATION SCIENCES, 2013, 7 (05) :1677-1684
[38]   Approximation of a generalized Euler-Lagrange type additive mapping on Lie C*-algebras [J].
Wang, Zhihua ;
Sahoo, Prasanna K. .
INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2016, 7 (02) :195-204
[39]   A fixed point approach to the hyers-ulam stability of a functional equation in various normed spaces [J].
Hassan Azadi Kenary ;
Sun Young Jang ;
Choonkil Park .
Fixed Point Theory and Applications, 2011
[40]   A fixed point approach to the hyers-ulam stability of a functional equation in various normed spaces [J].
Kenary, Hassan Azadi ;
Jang, Sun Young ;
Park, Choonkil .
FIXED POINT THEORY AND APPLICATIONS, 2011, :1-14