Fuzzy Stability of Euler-Lagrange Type Cubic Functional Equation: A Fixed Point Approach

被引:0
作者
Ravi, K. [1 ]
Murali, R. [1 ]
Thandapani, E. [2 ]
机构
[1] Sacred Heart Coll, Dept Math, Tirupattur 635601, Tamil Nadu, India
[2] Univ Madras, Ramanujam Inst Adv Study Math, Chennai 600005, Tamil Nadu, India
来源
JOURNAL OF INFORMATICS AND MATHEMATICAL SCIENCES | 2012年 / 4卷 / 01期
关键词
Fuzzy normed space; Cubic functional equation; Generalized Hyers-Ulam stability;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, the authors investigate the generalized Hyers-Ulam stability of Euler-Lagrange type Cubic functional equation 2af (x + ay)+ 2f (ax - y) = (a(3) + a)[f (x + y)+ f (x y)] +2(a(4) - 1)f (y) in fuzzy normed space by direct method and fixed point method, where a is fixed integer with a not equal 0, +/- 1.
引用
收藏
页码:65 / 75
页数:11
相关论文
共 50 条
[1]   Stability of an Euler-Lagrange type Cubic Functional Equation [J].
Najati, A. ;
Moradlou, F. .
TURKISH JOURNAL OF MATHEMATICS, 2009, 33 (01) :65-73
[2]   A cubic functional equation of the Euler-Lagrange type on restricted domains [J].
Ostadbashi, Saeid ;
Najati, Abbas ;
EL-Fassi, Iz-iddine .
JOURNAL OF ANALYSIS, 2025, 33 (04) :1771-1783
[3]   Stabilities and instabilities of Euler-Lagrange cubic functional equation [J].
Ganapathy, G. ;
Sakthi, R. ;
Karthikeyan, S. ;
Vijaya, N. ;
Suresh, M. ;
Venkataramanan, K. .
JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2024, 35 (01) :82-95
[4]   Hyers-Ulam stability and hyperstability of a cubic functional equation of Euler-Lagrange type on restricted domains [J].
Najati, Abbas ;
Tareeghee, Mohammad Amin .
RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2025, 74 (05)
[5]   FUZZY STABILITY OF A CUBIC-QUARTIC FUNCTIONAL EQUATION: A FIXED POINT APPROACH [J].
Jang, Sun-Young ;
Park, Choonkil ;
Shin, Dong Yun .
BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2011, 48 (03) :491-503
[6]   Fuzzy stability of a cubic functional equation via fixed point technique [J].
Syed Abdul Mohiuddine ;
Abdullah Alotaibi .
Advances in Difference Equations, 2012
[7]   Fuzzy stability of a cubic functional equation via fixed point technique [J].
Mohiuddine, Syed Abdul ;
Alotaibi, Abdullah .
ADVANCES IN DIFFERENCE EQUATIONS, 2012,
[8]   A fixed point approach to the stability of the cubic functional equation [J].
Jung, Soon-Mo ;
Kim, Tae-Soo .
BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2006, 12 (01) :51-57
[9]   STABILITY OF THE GENERALAIZED VERSION OF EULER-LAGRANGE TYPE QUADRATIC EQUATION [J].
Kim, Chang Il ;
Han, Giljun ;
Chang, Jeongwook .
JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2016, 21 (01) :156-169
[10]   SOLUTION AND STABILITY OF A CUBIC TYPE FUNCTIONAL EQUATION: USING DIRECT AND FIXED POINT METHODS [J].
Govindan, V ;
Murthy, S. ;
Saravanan, M. .
KRAGUJEVAC JOURNAL OF MATHEMATICS, 2020, 44 (01) :7-26