A dichotomy theorem for maximum generalized satisfiability problems

被引:76
作者
Creignou, N
机构
[1] Departement de Mathématiques, Université de Caen
关键词
D O I
10.1006/jcss.1995.1087
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
We study the complexity of an infinite class of optimization satisfiability problems. Each problem is represented through a finite set, S, of logical relations (generalizing the notion of clauses of bounded length). We prove the existence of a dichotomic classification for optimization satisfiability problems Max-Sat(S). We exhibit a particular infinite set of logical relations L, such that the following holds: If every relation in S is O-valid (respectively 1-valid) or if even/relation in S belongs to L, then Max-Sat(S) is solvable in polynomial time, otherwise it is MAX SNP-complete. Therefore, Max-Sat(S) either is in P or has some epsilon-approximation algorithm with epsilon < 1 although not a polynomial-time approximation scheme, unless P = NP: L = {Pos(n), Neg(n), Spider (n,p,q), Complete-Bipartite(n,p):n,p,q epsilon N}, where Pos(n)(X(1), ..., X(n)) = (X(1) Lambda ... Lambda X(n)), Neg(n),p,q(X(1),..., X(n)) = (inverted left perpendicular X(1) Lambda ... Lambda inverted left perpendicular X(n)), Spider n,p,q(X(1), ..., X(n), Y-1, ..., Y-p, Z(1) ..., Z(q)) = Lambda(i=1)(n) (X(1) --> Y-1) Lambda Lambda(i=1)(p) (Y-1=Y(i) Lambda Lambda(i=1)(q) (Y-1 --> Z(i)), and Complete-Bipartite(n,p)(X(1), ..., X(n), Y-1, ..., Y-p) = Lambda(i)=1(n) Lambda(j=1)(p) (X(i) --> Y-j). (C) 1995 Academic Press, Inc.
引用
收藏
页码:511 / 522
页数:12
相关论文
共 15 条
[1]  
ARORA S, 1992, AN S FDN CO, P14
[2]  
CREIGNOU N, IN PRESS INFORM COMP
[3]  
CREIGNOU N, 1994, 19942 GROUP RECH ALG
[4]  
Even S., 1975, SIAM Journal on Computing, V4, P507, DOI 10.1137/0204043
[5]  
FORTUNE S, 1980, THEORET COMPUT SCI, V10, P112
[6]  
Garey M.R., 1979, COMPUTERS INTRACTABI, V174
[7]   ON THE COMPLEXITY OF H-COLORING [J].
HELL, P ;
NESETRIL, J .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1990, 48 (01) :92-110
[8]  
Hodges W., 1993, MODEL THEORY, V42
[9]  
Horn A, 1951, J SYMBOLIC LOGIC, V16, P14, DOI DOI 10.2307/2268661
[10]   ON THE COMPLEXITY OF THE MAXIMUM SATISFIABILITY PROBLEM FOR HORN FORMULAS [J].
JAUMARD, B ;
SIMEONE, B .
INFORMATION PROCESSING LETTERS, 1987, 26 (01) :1-4