A NEWTON-TYPE METHOD FOR POSITIVE-SEMIDEFINITE LINEAR COMPLEMENTARITY-PROBLEMS

被引:59
作者
FISCHER, A
机构
[1] Department of Mathematics, Dresden University of Technology, Dresden
关键词
LINEAR COMPLEMENTARITY PROBLEMS; NEWTONS METHOD; GLOBAL AND LOCAL SUPERLINEAR CONVERGENCE;
D O I
10.1007/BF02192160
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
The paper presents a damped and perturbed Newton-type method for solving linear complementarity problems with positive-semidefinite matrices M. In particular, the following properties hold: all occurring subproblems are linear equations; each subproblem is uniquely solvable without any assumption; every accumulation point generated by the method solves the linear complementarity problem. The additional property of M to be an R(o)-matrix is sufficient, but not necessary, for the boundedness of the iterates. Provided that M is positive definite on a certain subspace, the method converges Q-quadratically.
引用
收藏
页码:585 / 608
页数:24
相关论文
共 32 条
[1]   NEWTONS METHOD FOR LINEAR COMPLEMENTARITY-PROBLEMS [J].
AGANAGIC, M .
MATHEMATICAL PROGRAMMING, 1984, 28 (03) :349-362
[2]   CONVEX SPLINE INTERPOLANTS WITH MINIMAL CURVATURE [J].
BURMEISTER, W ;
HESS, W ;
SCHMIDT, JW .
COMPUTING, 1985, 35 (02) :219-229
[3]  
BURMEISTER W, 1985, COMMUNICATION
[4]  
Clarke F.H., 1983, OPTIMIZATION NONSMOO
[5]  
Cottle, 1992, LINEAR COMPLEMENTARI
[6]  
DIPILLO G, 1986, MATH PROGRAM, V36, P1, DOI 10.1007/BF02591986
[7]  
Fischer A., 1992, Optimization, V24, P269, DOI 10.1080/02331939208843795
[8]  
FISCHER A, 1991, 070991 DRESD U TECHN
[9]  
FISCHER A, 1992, MATHNM041992 DRESD U
[10]   A NONMONOTONE LINE SEARCH TECHNIQUE FOR NEWTON METHOD [J].
GRIPPO, L ;
LAMPARIELLO, F ;
LUCIDI, S .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1986, 23 (04) :707-716