INTEGRABILITY AND STRUCTURAL STABILITY OF SOLUTIONS TO THE GINZBURG-LANDAU EQUATION

被引:14
作者
KEEFE, LR [1 ]
机构
[1] UNIV SO CALIF,DEPT AEROSP ENGN,LOS ANGELES,CA 90089
关键词
D O I
10.1063/1.865964
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
引用
收藏
页码:3135 / 3141
页数:7
相关论文
共 36 条
[1]   NON-LINEAR EVOLUTION EQUATIONS AND ORDINARY DIFFERENTIAL-EQUATIONS OF PAINLEVE TYPE [J].
ABLOWITZ, MJ ;
RAMANI, A ;
SEGUR, H .
LETTERE AL NUOVO CIMENTO, 1978, 23 (09) :333-338
[2]  
Arnol'd VI., 1963, RUSS MATH SURV, V18, P9, DOI [10.1070/RM1963v018n05ABEH004130, DOI 10.1070/RM1963V018N05ABEH004130]
[3]  
BLENERHASSETT PJ, 1980, PHILOS T R SOC LON A, V1441, P43
[4]   INTEGRABLE HAMILTONIAN-SYSTEMS AND THE PAINLEVE PROPERTY [J].
BOUNTIS, T ;
SEGUR, H ;
VIVALDI, F .
PHYSICAL REVIEW A, 1982, 25 (03) :1257-1264
[5]   INSTABILITY AND CONFINED CHAOS IN A NON-LINEAR DISPERSIVE WAVE SYSTEM [J].
CAPONI, EA ;
SAFFMAN, PG ;
YUEN, HC .
PHYSICS OF FLUIDS, 1982, 25 (12) :2159-2166
[6]   ANALYTIC STRUCTURE OF THE HENON-HEILES HAMILTONIAN IN INTEGRABLE AND NON-INTEGRABLE REGIMES [J].
CHANG, YF ;
TABOR, M ;
WEISS, J .
JOURNAL OF MATHEMATICAL PHYSICS, 1982, 23 (04) :531-538
[7]   PAINLEVE PROPERTY AND MULTICOMPONENT ISOSPECTRAL DEFORMATION EQUATIONS [J].
CHUDNOVSKY, DV ;
CHUDNOVSKY, GV ;
TABOR, M .
PHYSICS LETTERS A, 1983, 97 (07) :268-274
[8]   THE PAINLEVE PROPERTY AND A PARTIAL-DIFFERENTIAL EQUATION WITH AN ESSENTIAL SINGULARITY [J].
CLARKSON, PA .
PHYSICS LETTERS A, 1985, 109 (05) :205-208
[9]  
DAVIS H. T., 1962, INTRO NONLINEAR DIFF
[10]   FINITE-DIFFERENCE SOLUTIONS OF A NON-LINEAR SCHRODINGER-EQUATION [J].
DELFOUR, M ;
FORTIN, M ;
PAYRE, G .
JOURNAL OF COMPUTATIONAL PHYSICS, 1981, 44 (02) :277-288