SINGULARITIES OF ROTATIONALLY SYMMETRICAL SOLUTIONS OF BOUNDARY-VALUE-PROBLEMS FOR THE LAME EQUATIONS

被引:16
作者
BEAGLES, AE [1 ]
SANDIG, AM [1 ]
机构
[1] BRUNEL UNIV,DEPT MATH & STAT,UXBRIDGE UB8 3PH,MIDDX,ENGLAND
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK | 1991年 / 71卷 / 11期
关键词
D O I
10.1002/zamm.19910711102
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We apply the theory of elliptic boundary value problems in non-smooth domains with conical points to rotationally symmetric solutions of boundary value problems for the Lame equations. The resulting expansion involves singular vector-functions which, in turn, depend on a parameter, alpha. We here present equations which determine the values of alpha for either stress-free or Dirichlet boundary conditions. We give a numerical algorithm whereby alpha can be computed and present some plots of the values obtained. The singular vector-functions are given explicitly and we present equations for the computation of the coefficients of the expansion.
引用
收藏
页码:423 / 431
页数:9
相关论文
共 15 条
[1]  
[Anonymous], 1953, HIGHER TRANSCENDENTA
[2]  
ATKIN RJ, 1980, LONGMAN MATH TEXTS
[3]  
Bazant Z. P., 1974, International Journal of Solids and Structures, V10, P957, DOI 10.1016/0020-7683(74)90003-1
[4]   GENERAL CONICAL SINGULARITIES IN 3-DIMENSIONAL POISSON PROBLEMS [J].
BEAGLES, AE ;
WHITEMAN, JR .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 1989, 11 (02) :215-235
[5]  
Grisvard P., 1985, ELLIPTIC PROBLEMS NO, V24
[6]  
Grisvard P., 1986, MODE EMPLOI EDF B C, P21
[7]  
Kondrat'ev VA., 1967, T MOSCOW MATH SOC, V16, P209
[8]  
Kondrat'ev VA, 1967, T MOSK MATEM OVA, V16, P209
[9]  
KUFNER A, 1987, TEUBNER TEXTE
[10]  
Mazja V.G., 1978, AM MATH SOC TRANSL 2, V81, p[25, 1]