OSCILLATION AND GLOBAL STABILITY IN A DELAY LOGISTIC EQUATION

被引:20
作者
LADAS, G
QIAN, C
机构
[1] Department of Mathematics, University of Rhode Island, Kingston
来源
DYNAMICS AND STABILITY OF SYSTEMS | 1994年 / 9卷 / 02期
关键词
Equations of motion - Oscillations;
D O I
10.1080/02681119408806174
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We obtain a necessary and sufficient condition for every positive solution of the delay logistic equation x(t) = x(t)[a + bx(p)(t - tau) - cx(q)(t - tau)], t greater-than-or-equal-to 0 (star) to oscillate about its positive equilibrium. We also obtain conditions under which the positive equilibrium of (star) is globally asymptotically stable.
引用
收藏
页码:153 / 162
页数:10
相关论文
共 4 条
[1]  
Bellman R., 1963, DIFFERENTIAL DIFFERE, DOI 10.1063/1.3050672
[2]   ON THE OSCILLATION AND ASYMPTOTIC-BEHAVIOR OF N(T)=N(T)[A+BN(T-TAU)-CN2(T-TAU)] [J].
GOPALSAMY, K ;
LADAS, G .
QUARTERLY OF APPLIED MATHEMATICS, 1990, 48 (03) :433-440
[3]  
Gyori I., 1991, OSCILLATION THEORY D
[4]  
HALE J, 1977, THEORY FUNCTIONAL DI