The minimum free energy in fractional models of materials with memory

被引:2
作者
Amendola, Giovambattista [1 ]
Fabrizio, Mauro [2 ]
Golden, John Murrough [3 ]
机构
[1] Dipartmento Math, Largo Bruno Pontecorvo 5, I-56127 Pisa, Italy
[2] Dipartimento Matemat, I-40127 Bologna, Italy
[3] Dublin Inst Technol, Sch Math Sci, Dublin 8, Ireland
关键词
Materials with memory; Fractional derivative; Free energy functionals; Thermodynamics;
D O I
10.1685/journal.caim.488
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Explicit forms of the minimum free energy and the corresponding rate of dissipation, for general histories of strain, are derived and discussed within the context of fractional derivative models of materials with memory. Simple formulae are also given for sinusoidal and exponential histories.
引用
收藏
页数:30
相关论文
共 16 条
[11]   On Mittag-Leffler-type functions in fractional evolution processes [J].
Mainardi, F ;
Gorenflo, R .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2000, 118 (1-2) :283-299
[12]  
Mainardi F., 2010, FRACTIONAL CALCULUS, DOI DOI 10.1142/P614
[13]  
Muskhelishvili N.I., 1953, SINGULAR INTEGRAL EQ
[14]   A new general law of deformation. [J].
Nutting, PG .
JOURNAL OF THE FRANKLIN INSTITUTE, 1921, 191 :0679-0685
[15]   VISCOELASTIC PROPERTIES OF DILUTE POLYMER SOLUTIONS [J].
ROUSE, PE ;
SITTEL, K .
JOURNAL OF APPLIED PHYSICS, 1953, 24 (06) :690-696
[16]  
[No title captured]