WEAK UNIVERSALITY IN 2-DIMENSIONAL TRANSITIONS TO CHAOS

被引:17
作者
HALL, T
机构
[1] Institut Non-Linéaire de Nice Université de Nice Sophia Antipolis, Faculté des Sciences, 06108 Nice Cedex 2
关键词
D O I
10.1103/PhysRevLett.71.58
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Two rational numbers are associated to each periodic orbit of Smale's horseshoe, and practical algorithms are given for their calculation. Using these quantities, it is possible to decide in many cases whether or not a given orbit must always be created after some other given orbit in any two-dimensional transition to chaos. A statement of ''weak universality'' for the bifurcation sequence as a whole is formulated.
引用
收藏
页码:58 / 61
页数:4
相关论文
共 20 条
[2]  
BESTVINA M, IN PRESS
[3]  
BOYLAND P, 1988, CONT MATH, V81, P119
[4]  
BOYLAND P, UNPUB
[5]   TOPOLOGICAL AND METRIC PROPERTIES OF HENON-TYPE STRANGE ATTRACTORS [J].
CVITANOVIC, P ;
GUNARATNE, GH ;
PROCACCIA, I .
PHYSICAL REVIEW A, 1988, 38 (03) :1503-1520
[6]   MARKOV SHIFTS IN THE HENON FAMILY [J].
DAVIS, MJ ;
MACKAY, RS ;
SANNAMI, A .
PHYSICA D, 1991, 52 (2-3) :171-178
[7]  
Devaney R L, 1989, INTRO CHAOTIC DYNAMI
[8]  
ELHAMOULY H, 1981, CR ACAD SCI I-MATH, V293, P525
[9]   SIMPLE-MODELS FOR BIFURCATIONS CREATING HORSESHOES [J].
GAMBAUDO, JM ;
TRESSER, C .
JOURNAL OF STATISTICAL PHYSICS, 1983, 32 (03) :455-476
[10]  
HALL T, 1991, THESIS U CAMBRIDGE