PHYSICAL-PROPERTIES OF THE HALF-FILLED HUBBARD-MODEL IN INFINITE DIMENSIONS

被引:236
作者
GEORGES, A [1 ]
KRAUTH, W [1 ]
机构
[1] ECOLE NORMALE SUPER, PHYS STAT LAB, F-75231 PARIS 05, FRANCE
关键词
D O I
10.1103/PhysRevB.48.7167
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A detailed quantitative study of the physical properties of the infinite-dimensional Hubbard model at half filling is presented. The method makes use of an exact mapping onto a single-impurity model supplemented by a self-consistency condition. This coupled problem is solved numerically. Results for thermodynamic quantities (specific heat, entropy,...), one-particle spectral properties, and magnetic properties (response to a uniform magnetic field) are presented and discussed. The nature of the Mott-Hubbard metal-insulator transition found in this model is investigated. A numerical solution of the mean-field equations inside the antiferromagnetic phase is also reported.
引用
收藏
页码:7167 / 7182
页数:16
相关论文
共 48 条
[1]   LOCALIZED MAGNETIC STATES IN METALS [J].
ANDERSON, PW .
PHYSICAL REVIEW, 1961, 124 (01) :41-&
[2]  
BENDER CM, 1978, ADV MATH METHODS SCI, P396
[3]   MONTE-CARLO CALCULATIONS OF COUPLED BOSON-FERMION SYSTEMS .1. [J].
BLANKENBECLER, R ;
SCALAPINO, DJ ;
SUGAR, RL .
PHYSICAL REVIEW D, 1981, 24 (08) :2278-2286
[4]   THERMODYNAMICS AND CORRELATION-FUNCTIONS OF THE FALICOV-KIMBALL MODEL IN LARGE DIMENSIONS [J].
BRANDT, U ;
MIELSCH, C .
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1989, 75 (03) :365-370
[5]   THERMODYNAMICS OF THE FALICOV-KIMBALL MODEL IN LARGE DIMENSIONS .2. CRITICAL-TEMPERATURE AND ORDER PARAMETER [J].
BRANDT, U ;
MIELSCH, C .
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1990, 79 (02) :295-299
[6]   FREE-ENERGY OF THE FALICOV-KIMBALL MODEL IN LARGE DIMENSIONS [J].
BRANDT, U ;
MIELSCH, C .
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1991, 82 (01) :37-41
[7]   Application of Gutzwiller's variational method to the metal-insulator transition [J].
Brinkman, W. F. ;
Rice, T. M. .
PHYSICAL REVIEW B-SOLID STATE, 1970, 2 (10) :4302-4304
[8]   EVOLUTION OF THE SPECTRAL-FUNCTION IN MOTT-HUBBARD SYSTEMS WITH D(1) CONFIGURATION [J].
FUJIMORI, A ;
HASE, I ;
NAMATAME, H ;
FUJISHIMA, Y ;
TOKURA, Y ;
EISAKI, H ;
UCHIDA, S ;
TAKEGAHARA, K ;
DEGROOT, FMF .
PHYSICAL REVIEW LETTERS, 1992, 69 (12) :1796-1799
[9]   STRONGLY CORRELATED SYSTEMS IN INFINITE DIMENSIONS AND THEIR ZERO DIMENSIONAL COUNTERPARTS [J].
GEORGES, A ;
KOTLIAR, G ;
SI, QM .
INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 1992, 6 (5-6) :705-730
[10]   NUMERICAL-SOLUTION OF THE D=INFINITY HUBBARD-MODEL - EVIDENCE FOR A MOTT TRANSITION [J].
GEORGES, A ;
KRAUTH, W .
PHYSICAL REVIEW LETTERS, 1992, 69 (08) :1240-1243