AN INTEGRAL-INVARIANCE PRINCIPLE FOR NONLINEAR-SYSTEMS

被引:52
作者
BYRNES, CI [1 ]
MARTIN, CF [1 ]
机构
[1] TEXAS TECH UNIV,DEPT MATH,LUBBOCK,TX 79409
基金
美国国家航空航天局; 美国国家科学基金会;
关键词
D O I
10.1109/9.388676
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we present an integral-invariance principle generalizing LaSalle's invariance principle for nonlinear systems, The principal new ingredients are the use of observation functions and certain integrability conditions, which are particularly well suited for dynamical systems involving control and observations, Indeed, the integral-invariance principle leads to the development of a series of results relating stability, observability, and the converse theorems of Lyapunov theory, Corollaries include apparently diverse stabilizability results for adaptive control, for nonlinear control, and for passive circuits and systems.
引用
收藏
页码:983 / 994
页数:12
相关论文
共 28 条
[21]  
MULLER PC, 1977, ABH AKAD WISS DDR, V2, P125
[22]  
MULLER PC, 1977, ABH AKAD WISS DDR, V1, P125
[23]  
MULLER PC, 1975, TOPICS CONT MECHANIC, pA165
[24]   EXPLICIT DESIGN OF TIME-VARYING STABILIZING CONTROL LAWS FOR A CLASS OF CONTROLLABLE SYSTEMS WITHOUT DRIFT [J].
POMET, JB .
SYSTEMS & CONTROL LETTERS, 1992, 18 (02) :147-158
[25]   DISSIPATIVE DYNAMICAL-SYSTEMS .1. GENERAL THEORY [J].
WILLEMS, JC .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1972, 45 (05) :321-&
[27]  
WILLEMS JC, 1984, 6TH P INT C AN OPT S, P49
[28]  
Wimmer H., 1974, LINEAR ALGEBRA APPL, V8, P337, DOI 10.1016/0024-3795(74)90060-3