THE NECESSITY OF THE WIENER TEST FOR SOME SEMILINEAR ELLIPTIC-EQUATIONS

被引:17
作者
ADAMS, DR [1 ]
HEARD, A [1 ]
机构
[1] GEORGETOWN COLL,DEPT MATH,GEORGETOWN,KY 40324
关键词
D O I
10.1512/iumj.1992.41.41007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Regular boundary points for solutions to the Dirichlet problem for -div(A(x)del u) = f (x, u, del u) in an arbitrary bounded domain in n-dimensional space, are regular points for Laplace's equation, when A(x) is Dini continuous and f has quadratic growth in del u.
引用
收藏
页码:109 / 124
页数:16
相关论文
共 17 条
[1]   A POINTWISE REGULARITY THEORY FOR THE 2-OBSTACLE PROBLEM [J].
DALMASO, G ;
MOSCO, U ;
VIVALDI, MA .
ACTA MATHEMATICA, 1989, 163 (1-2) :57-107
[2]  
Evans L., 1988, CBMS, V74
[3]  
EVANS LC, 1982, RES NOTES MATH NONLI, V3
[4]   THE WIENER TEST FOR DEGENERATE ELLIPTIC-EQUATIONS [J].
FABES, E ;
JERISON, D ;
KENIG, C .
ANNALES DE L INSTITUT FOURIER, 1982, 32 (03) :151-182
[5]   NECESSARY AND SUFFICIENT CONDITIONS FOR ABSOLUTE CONTINUITY OF ELLIPTIC-HARMONIC MEASURE [J].
FABES, EB ;
JERISON, DS ;
KENIG, CE .
ANNALS OF MATHEMATICS, 1984, 119 (01) :121-141
[6]  
FEFFERMEN R, IN PRESS ANN MATH
[7]   REGULARITY CONDITION AT BOUNDARY FOR SOLUTIONS OF QUASILINEAR ELLIPTIC EQUATIONS [J].
GARIEPY, R ;
ZIEMER, WP .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1977, 67 (01) :25-39
[8]  
Gilbarg D., 1983, ELLIPTIC PARTIAL DIF
[9]  
HELMS LL, 1969, SERIES PURE APPLIED, V22
[10]   INVARIANT CRITERIA FOR EXISTENCE OF SOLUTIONS TO 2ND-ORDER QUASILINEAR ELLIPTIC EQUATIONS [J].
KAZDAN, JL ;
KRAMER, RJ .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1978, 31 (05) :619-645