COMPUTING INTEGRAL POINTS ON ELLIPTIC-CURVES

被引:85
作者
GEBEL, J [1 ]
PETHO, A [1 ]
ZIMMER, HG [1 ]
机构
[1] UNIV DEBRECEN,SCH MED,INFORMAT LAB,H-4028 DEBRECEN,HUNGARY
关键词
D O I
10.4064/aa-68-2-171-192
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:171 / 192
页数:22
相关论文
共 37 条
[1]   DIOPHANTINE EQUATION Y2=AX3+BX2+CX+D [J].
BAKER, A .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY, 1968, 43 (169P) :1-&
[2]  
DAVID S, 1993, MINORATIONS FORMES L
[3]  
DEWEGER BMM, 1987, THESIS CENTRUM WISKU
[4]  
FREY G, 1987, DEC P RAM CENT INT C, P31
[5]   COMPUTING ALL POWER INTEGRAL BASES OF CUBIC FIELDS [J].
GAAL, I ;
SCHULTE, N .
MATHEMATICS OF COMPUTATION, 1989, 53 (188) :689-696
[6]  
GAAL I, 1991, J NUMBER THEORY, V38, P35, DOI 10.1016/0022-314X(91)90091-O
[7]  
Gantmacher FR, 1977, THEORY MATRICES, VI
[8]  
GEBEL J, 1994, CRM P LECT NOTES AM, P61
[9]   THE ARITHMOGEOMETRIC MEAN [J].
GRAYSON, DR .
ARCHIV DER MATHEMATIK, 1989, 52 (05) :507-512
[10]   THE CANONICAL HEIGHT AND INTEGRAL POINTS ON ELLIPTIC-CURVES [J].
HINDRY, M ;
SILVERMAN, JH .
INVENTIONES MATHEMATICAE, 1988, 93 (02) :419-450