Novel vitamin B-12 analogues in which the D-ribose moiety of the nucleotide loop was replaced by an oligomethylene group and a trimethylene analogue containing imidazole instead of 5,6-dimethylbenzimidazole as well as cobinamide methyl phosphate were tested for biological activities with Escherichia coli 215, a B-12- or methionine-auxotroph, and Lactobacillus leichmannii ATCC 7830 as test organisms. A cyano form of 5,6-dimethylbenzimidazolyl tetramethylene, trimethylene and hexamethylene analogues supported the growth of L. leichmannii in this order. 5,6-Dimethylbenzimidazolyl dimethylene and imidazolyl trimethylene analogues did not show B-12 activity and behaved as weak B-12 antagonists when added together with cyanocobalamin. An adenosyl form of the biologically active analogues served as coenzymes for ribonucleotide reductase of this bacterium, whereas that of the inactive analogues did not. The latter acted as weak competitive inhibitors against adenosylcobalamin. On the contrary, all the analogues did not support the growth of E. coli 215 at all by themselves and inhibited the growth when added with a suboptimum level of cyanocobalamin. A methyl form of the analogues also did not support the growth of E. coli 215, although they served as active coenzymes for methionine synthase of the bacterium. Since unlabeled analogues strongly inhibited the uptake of [H-3]cyanocobalamin by this bacterium, it seems likely that the analogues exert their anti-B-12 activity toward E. coli 215 by blocking the B-12-transport system