QUANTUM GALILEI GROUP AS SYMMETRY OF MAGNONS

被引:24
作者
BONECHI, F
CELEGHINI, E
GIACHETTI, R
SORACE, E
TARLINI, M
机构
[1] IST NAZL FIS NUCL,FLORENCE,ITALY
[2] UNIV BOLOGNA,DIPARTIMENTO MATEMAT,I-40126 BOLOGNA,ITALY
来源
PHYSICAL REVIEW B | 1992年 / 46卷 / 09期
关键词
D O I
10.1103/PhysRevB.46.5727
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Inhomogeneous quantum groups are shown to be an effective algebraic tool in the study of integrable systems. The method is illustrated on the one-dimensional Heisenberg ferromagnet whose symmetry is investigated by means of the quantum Galilei group GAMMA(q)(1) here introduced. Both the single magnon and the s = 1/2 bound states of n magnons are completely described by the algebra. Therefore, some of the results provided by the Bethe-ansatz method emerge as a natural consequence of the quantum symmetry of the discrete chain.
引用
收藏
页码:5727 / 5730
页数:4
相关论文
共 11 条
  • [1] Metal theory
    Bethe, H.
    [J]. ZEITSCHRIFT FUR PHYSIK, 1931, 71 (3-4): : 205 - 226
  • [2] INHOMOGENEOUS QUANTUM GROUPS AS SYMMETRIES OF PHONONS
    BONECHI, F
    CELEGHINI, E
    GIACHETTI, R
    SORACE, E
    TARLINI, M
    [J]. PHYSICAL REVIEW LETTERS, 1992, 68 (25) : 3718 - 3720
  • [3] THE QUANTUM HEISENBERG-GROUP H(1)Q
    CELEGHINI, E
    GIACHETTI, R
    SORACE, E
    TARLINI, M
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1991, 32 (05) : 1155 - 1158
  • [4] QUANTUM GROUPS OF MOTION AND ROTATIONAL SPECTRA OF HEAVY-NUCLEI
    CELEGHINI, E
    GIACHETTI, R
    SORACE, E
    TARLINI, M
    [J]. PHYSICS LETTERS B, 1992, 280 (3-4) : 180 - 186
  • [5] 3-DIMENSIONAL QUANTUM GROUPS FROM CONTRACTIONS OF SU(2)Q
    CELEGHINI, E
    GIACHETTI, R
    SORACE, E
    TARLINI, M
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1990, 31 (11) : 2548 - 2551
  • [6] THE 3-DIMENSIONAL EUCLIDEAN QUANTUM GROUP E(3)Q AND ITS R-MATRIX
    CELEGHINI, E
    GIACHETTI, R
    SORACE, E
    TARLINI, M
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1991, 32 (05) : 1159 - 1165
  • [7] CELEGHINI E, 1990, IN PRESS CONTRACTION
  • [8] KOREPIN VE, IN PRESS QUANTUM INV
  • [9] EXACT ANALYSIS OF AN INTERACTING BOSE GAS .1. GENERAL SOLUTION AND GROUND STATE
    LIEB, EH
    LINIGER, W
    [J]. PHYSICAL REVIEW, 1963, 130 (04): : 1605 - +
  • [10] Mattis D. C., 1981, THEORY MAGNETISM, VI