STABILITY OF INDIVIDUAL ELEMENTS UNDER ONE-PARAMETER SEMIGROUPS

被引:39
作者
BATTY, CJK [1 ]
PHONG, VQ [1 ]
机构
[1] INST MATH,HANOI 1000,VIETNAM
关键词
CO-SEMIGROUP; STABILITY; RESIDUAL SPECTRUM; SUN-REFLEXIVE; STABILIZATION; ALMOST PERIODIC;
D O I
10.2307/2001726
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let {T(t) : t greater-than-or-equal-to 0} be a C0-semigroup on a Banach space X with generator A, and let x is-a-member-of X. If sigma-(A) union iR is empty and t-->T(t)x is uniformly continuous, then \\T(t)x\\-->0 as t-->infinity. If the semigroup is sun-reflexive, sigma-(A) union iR is countable, Psigma-(A) union iR is empty, and t-->T(t)x is uniformly weakly continous, then T(t)x-->0 weakly as t-->infinity. Questions of almost periodicity and of stabilization of contraction semigroups on Hilbert space are also discussed.
引用
收藏
页码:805 / 818
页数:14
相关论文
共 21 条
[1]   TAUBERIAN-THEOREMS AND STABILITY OF ONE-PARAMETER SEMIGROUPS [J].
ARENDT, W ;
BATTY, CJK .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1988, 306 (02) :837-852
[3]  
CLEMENT P, 1987, ONE PARAMETER SEMIGR
[4]   APPLICATIONS OF ALMOST PERIODIC COMPACTIFICATIONS [J].
DELEEUW, K ;
GLICKSBERG, I .
ACTA MATHEMATICA, 1961, 105 (1-2) :63-97
[5]  
Dunford N, 1958, LINEAR OPERATORS, VI
[6]  
Foias C., 1970, HARMONIC ANAL OPERAT
[7]  
Ingham AE, 1935, P LOND MATH SOC, V38, P458
[8]  
KOREVAAR J, 1982, MATH INTELL, V4, P108
[9]  
KOROBOV VI, 1984, DIFF EQUAT+, V20, P1320
[10]  
Krengel U., 1985, ERGODIC THEOREMS