NEWTON POLYGONS FOR GENERAL HYPERKLOOSTERMAN SUMS

被引:0
|
作者
SPERBER, S [1 ]
机构
[1] UNIV MINNESOTA,SCH MATH,MINNEAPOLIS,MN 55455
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:267 / 330
页数:64
相关论文
共 50 条
  • [1] Hyperkloosterman sums revisited
    Adolphson, Alan
    Sperber, Steven
    JOURNAL OF NUMBER THEORY, 2023, 243 : 328 - 351
  • [2] NEWTON POLYGONS FOR CHARACTER SUMS AND POINCARE SERIES
    Blache, Regis
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2011, 7 (06) : 1519 - 1542
  • [3] Newton polygons for L-functions of generalized Kloosterman sums
    Wang, Chunlin
    Yang, Liping
    FORUM MATHEMATICUM, 2022, 34 (01) : 77 - 96
  • [4] Minkowski Sums of Monotone and General Simple Polygons
    Eduard Oks
    Micha Sharir
    Discrete & Computational Geometry, 2006, 35 : 223 - 240
  • [5] Minkowski sums of monotone and general simple polygons
    Oks, E
    Sharir, M
    DISCRETE & COMPUTATIONAL GEOMETRY, 2006, 35 (02) : 223 - 240
  • [6] Generic Newton polygons for L-functions of (A, B)-exponential sums
    Yang, Liping
    Zhang, Hao
    FINITE FIELDS AND THEIR APPLICATIONS, 2022, 78
  • [7] Newton polygons of sums on curves I: local-to-global theorems
    Kramer-Miller, Joe
    Upton, James
    MATHEMATISCHE ANNALEN, 2025, 391 (01) : 1347 - 1394
  • [8] Newton Polygons of Sums on Curves II: Variation in p-adic Families
    Kramer-Miller, Joe
    Upton, James
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2023, 2023 (21) : 18500 - 18536
  • [9] Newton polygons of L-functions for two-variable generalized Kloosterman sums
    Wang, Chunlin
    Yang, Liping
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2024, 20 (01) : 103 - 118
  • [10] A τ-Conjecture for Newton Polygons
    Koiran, Pascal
    Portier, Natacha
    Tavenas, Sebastien
    Thomasse, Stephan
    FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2015, 15 (01) : 185 - 197