ON FUNCTIONAL INEQUALITIES ASSOCIATED WITH JORDAN-VON NEUMANN TYPE FUNCTIONAL EQUATIONS

被引:0
作者
An, Jong Su [1 ]
机构
[1] Pusan Natl Univ, Dept Math Educ, Pusan 609735, South Korea
来源
COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY | 2008年 / 23卷 / 03期
关键词
Jordan-von Neumann type bi-additive functional equation; Jordan-von Neumann type additive-quadratic functional equation; Hyers-Ulam-Rassias stability; functional inequality;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, it is shown that if f satisfies the following functional inequality (0.1) parallel to Sigma(3)(i,j=1) f(x(i), y(j))parallel to <= parallel to f(x(1) + x(2) + x(3), y(1) + y(2) + y(3)) parallel to then f is a bi-additive mapping. We moreover prove that if f satisfies the following functional inequality (0.2). parallel to 2 Sigma(3)(j= 1) f(x(j), z) + 2 Sigma(3)(j= 1) f(x(j), w) - f( Sigma(3)(j= 1) x(j), z - w)parallel to <= parallel to f( Sigma(3)(j= 1) x(j), z + w)parallel to then f is an additive-quadratic mapping.
引用
收藏
页码:371 / 376
页数:6
相关论文
共 27 条
[1]   ON THE STABILITY OF THE QUADRATIC MAPPING IN NORMED SPACES [J].
CZERWIK, S .
ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 1992, 62 :59-64
[2]  
Fechner W., 2006, AEQUATIONES MATH, V71, P149, DOI [10.1007/s00010-005-2775-9, DOI 10.1007/s00010-005-2775-9]
[3]  
Gilanyi A, 2002, MATH INEQUAL APPL, V5, P707
[4]  
Gilanyi A., 2001, AEQUATIONES MATH, V62, P303, DOI DOI 10.1007/PL00000156
[5]   On the stability of the linear functional equation [J].
Hyers, DH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1941, 27 :222-224
[6]  
Jun K.-W., 2001, B KOREAN MATH SOC, V38, P679
[7]  
Jun Kil-Woung, 2005, [Bulletin of the KMS, 대한수학회보], V42, P133
[8]  
Jun KW, 2004, J KOREAN MATH SOC, V41, P501
[9]  
Kang J., 2004, B KOREAN MATH SOC, V41, P541
[10]  
Kim G. H., 2000, COMMUN KOREAN MATH S, V15, P45