BIORTHOGONAL COUPLING-COEFFICIENTS OF U(Q)(N)

被引:8
作者
ALISAUSKAS, S
机构
[1] Inst. of Theor. Phys. and Astron., Vilnius
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1995年 / 28卷 / 04期
关键词
D O I
10.1088/0305-4470/28/4/022
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The coupling (Wigner-Clebsch-Gordan) coefficients and their isofactors for the unitary quantum algebras u(q)(n) with the repeating irreducible representations in the coproduct decomposition are considered. Generalizing the U(n) case, the biorthogonal systems of the u(q)(n) isofactors with the dual multiplicity labels are constructed by means of the recoupling technique in terms of the isofactors with simpler multiplicity structure. A first construction, correlated with the inverted Littlewood-Richardson rules, gives the bilinear combinations of isofactors after applying the proportionality of the q-recoupiing (Racah) coefficients to the boundary q-isofactors. An alternative recursive construction gives the nonorthogonal q-isofactors satisfying the most elementary boundary conditions and proportional to the u(q)(n-1) recoupling coefficients for some less restricted values of parameters. Some multiplicity-free and more general u(q)(n) recoupling coefficients are found, the blocks (bilinear combinations) of which (equal to the resubducing coefficients of the complementary chains of q-algebras) are proposed to use for the orthonormalization of some u(q)(n) biorthogonal isofactors, including the general u(q)(3) case.
引用
收藏
页码:985 / 1003
页数:19
相关论文
共 41 条
[1]   BIORTHOGONAL SYSTEMS FOR SU4-SUPERSET-OF-SU2XSU2, SUN-SUPERSET-OF-SON AND SP4-SUPERSET-OF-U2 AND ANALYTICAL INVERSION SYMMETRY [J].
ALISAUSKAS, S .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1987, 20 (05) :1045-1063
[2]   MULTIPLICITY-FREE U(Q)(N) COUPLING-COEFFICIENTS [J].
ALISAUSKAS, S ;
SMIRNOV, F .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1994, 27 (17) :5925-5939
[3]   EXPLICIT ORTHONORMAL CLEBSCH-GORDAN-COEFFICIENTS OF SU(3) [J].
ALISAUSKAS, S .
JOURNAL OF MATHEMATICAL PHYSICS, 1990, 31 (06) :1325-1332
[5]   SYMMETRIC TENSOR OPERATORS OF UNITARY GROUPS [J].
ALISAUSKAS, SJ ;
JUCYS, AAA ;
JUCYS, AP .
JOURNAL OF MATHEMATICAL PHYSICS, 1972, 13 (09) :1329-+
[6]  
ALISAUSKAS SJ, 1982, LIET FIZ RINKINYS, V22, P13
[7]  
ALISAUSKAS SJ, 1983, PART NUCL, V14, P1336
[8]  
ALISAUSKAS SJ, 1978, LIET FIZ RINKINYS, V18, P701
[9]  
ALISHAUS.SI, 1971, DOKL AKAD NAUK SSSR+, V197, P804
[10]  
Alishauskas S. I., 1972, Litovskii Fizicheskii Sbornik, V12, P721