RECENT ADVANCES IN NUMERICAL METHODS FOR NONLINEAR EQUATIONS AND NONLINEAR LEAST SQUARES

被引:77
|
作者
Yuan, Ya-Xiang [1 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, Inst Computat Math & Sci Engn Comp, State Key Lab Sci Engn Comp, Zhong Guan Cun Donglu 55, Beijing 100190, Peoples R China
来源
NUMERICAL ALGEBRA CONTROL AND OPTIMIZATION | 2011年 / 1卷 / 01期
关键词
Nonlinear equations; nonlinear least squares; Levenberg-Marquardt; quasi-Newton; trust region; variable projection; subspace; local error bound conditions; convergence;
D O I
10.3934/naco.2011.1.15
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Nonlinear equations and nonlinear least squares problems have many applications in physics, chemistry, engineering, biology, economics, finance and many other fields. In this paper, we will review some recent results on numerical methods for these two special problems, particularly on Levenberg-Marquardt type methods, quasi-Newton type methods, and trust region algorithms. Discussions on variable projection methods and subspace methods are also given. Some theoretical results about local convergence results of the Levenberg-Marquardt type methods without non-singularity assumption are presented. A few model algorithms based on line searches and trust regions are also given.
引用
收藏
页码:15 / 34
页数:20
相关论文
共 50 条
  • [31] A method for nonlinear least squares with structured residuals
    Shaw, Steven R.
    Laughman, Christopher R.
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2006, 51 (10) : 1704 - 1708
  • [32] Scalable subspace methods for derivative-free nonlinear least-squares optimization
    Coralia Cartis
    Lindon Roberts
    Mathematical Programming, 2023, 199 : 461 - 524
  • [33] Regularization methods for uniformly rank-deficient nonlinear least-squares problems
    Eriksson, J
    Wedin, PA
    Gulliksson, ME
    Söderkvist, I
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2005, 127 (01) : 1 - 26
  • [34] Stable factorized quasi-Newton methods for nonlinear least-squares problems
    Ma, XF
    Fung, R
    Ying, K
    Xu, CX
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2001, 129 (1-2) : 1 - 14
  • [35] Regularization Methods for Uniformly Rank-Deficient Nonlinear Least-Squares Problems
    J. Eriksson
    P. A. Wedin
    M. E. Gulliksson
    I. Söderkvist
    Journal of Optimization Theory and Applications, 2005, 127 : 1 - 26
  • [36] A New Family of Methods for Nonlinear Equations
    Zhang, Yuxin
    Ding, Hengfei
    He, Wansheng
    Yang, Xiaoya
    INFORMATION COMPUTING AND APPLICATIONS, 2010, 6377 : 387 - 394
  • [37] RANK-DEFICIENT NONLINEAR LEAST SQUARES PROBLEMS AND SUBSET SELECTION
    Ipsen, I. C. F.
    Kelley, C. T.
    Pope, S. R.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2011, 49 (03) : 1244 - 1266
  • [38] UNIQUENESS AND STABILITY FOR THE SOLUTION OF A NONLINEAR LEAST SQUARES PROBLEM
    Huang, Meng
    Xu, Zhiqiang
    MATHEMATICS OF COMPUTATION, 2024, 93 (347) : 1247 - 1264
  • [39] Stochastic Adaptive Nonlinear Control With Filterless Least Squares
    Li, Wuquan
    Krstic, Miroslav
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2021, 66 (09) : 3893 - 3905
  • [40] Estimation and inference in unstable nonlinear least squares models
    Boldea, Otilia
    Hall, Alastair R.
    JOURNAL OF ECONOMETRICS, 2013, 172 (01) : 158 - 167