A PRECONDITIONED ITERATIVE METHOD FOR SADDLEPOINT PROBLEMS

被引:251
作者
RUSTEN, T [1 ]
WINTHER, R [1 ]
机构
[1] UNIV OSLO, DEPT INFORMAT, N-0316 OSLO 3, NORWAY
关键词
MINIMUM RESIDUAL METHODS; INDEFINITE SYSTEMS; PRECONDITIONING;
D O I
10.1137/0613054
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A preconditioned iterative method for indefinite linear systems corresponding to certain saddlepoint problems is suggested. The block structure of the systems is utilized in order to design effective preconditioners, while the governing iterative solver is a standard minimum residual method. The method is applied to systems derived from discretizations of the Stokes problem and mixed formulations of second-order elliptic problems.
引用
收藏
页码:887 / 904
页数:18
相关论文
共 30 条
[1]  
[Anonymous], 1983, STUD MATH APPL
[2]  
ATLESTAM B, 1977, 7736R CHALM U TECHN
[3]  
AXELSSON O, 1984, COMPUTER SCI APPLIED
[4]  
AXELSSON O, 1984, ELLIPTIC PROBLEM SOL, P219
[5]  
BANK RE, 1990, NUMER MATH, V56, P645, DOI 10.1007/BF01405194
[6]  
BRAMBLE JH, 1988, MATH COMPUT, V50, P1, DOI 10.1090/S0025-5718-1988-0917816-8
[7]   A DOMAIN DECOMPOSITION TECHNIQUE FOR STOKES PROBLEMS [J].
BRAMBLE, JH ;
PASCIAK, JE .
APPLIED NUMERICAL MATHEMATICS, 1990, 6 (04) :251-261
[8]   MIXED FINITE-ELEMENTS FOR 2ND-ORDER ELLIPTIC PROBLEMS IN 3 VARIABLES [J].
BREZZI, F ;
DOUGLAS, J ;
DURAN, R ;
FORTIN, M .
NUMERISCHE MATHEMATIK, 1987, 51 (02) :237-250
[9]  
BREZZI F, 1987, RAIRO-MATH MODEL NUM, V21, P581
[10]   FOURIER-ANALYSIS OF ITERATIVE METHODS FOR ELLIPTIC PROBLEMS [J].
CHAN, TF ;
ELMAN, HC .
SIAM REVIEW, 1989, 31 (01) :20-49