Directed interactions between auditory and superior temporal cortices and their role in sensory integration

被引:60
作者
Kayser, Christoph [1 ]
Logothetis, Nikos K. [1 ,2 ]
机构
[1] Max Planck Inst Biol Cybernet, Spemannstr 38, D-72076 Tubingen, Germany
[2] Univ Manchester, Div Imaging Sci & Biomed Engn, Manchester, Lancs, England
关键词
cross-modal; Granger causality; auto-regressive model; directed transfer function; local field potential; superior temporal sulcus; multisensory;
D O I
10.3389/neuro.07.007.2009
中图分类号
B84 [心理学]; C [社会科学总论]; Q98 [人类学];
学科分类号
03 ; 0303 ; 030303 ; 04 ; 0402 ;
摘要
Recent studies using functional imaging and electrophysiology demonstrate that processes related to sensory integration are not restricted to higher association cortices but already occur in early sensory cortices, such as primary auditory cortex. While anatomical studies suggest the superior temporal sulcus (STS) as likely source of visual input to auditory cortex, little evidence exists to support this notion at the functional level. Here we tested this hypothesis by simultaneously recording from sites in auditory cortex and STS in alert animals stimulated with dynamic naturalistic audio-visual scenes. Using Granger causality and directed transfer functions we first quantified causal interactions at the level of field potentials, and subsequently determined those frequency bands that show effective interactions, i.e. interactions that are relevant for influencing neuronal fi ring at the target site. We found that effective interactions from auditory cortex to STS prevail below 20 Hz, while interactions from STS to auditory cortex prevail above 20 Hz. In addition, we found that directed interactions from STS to auditory cortex make a significant contribution to multisensory influences in auditory cortex: Sites in auditory cortex showing multisensory enhancement received stronger feed-back from STS during audio-visual than during auditory stimulation, while sites with multisensory suppression received weaker feed-back. These findings suggest that beta frequencies might be important for inter-areal coupling in the temporal lobe and demonstrate that superior temporal regions indeed provide one major source of visual influences to auditory cortex.
引用
收藏
页数:11
相关论文
共 83 条
[1]  
ABELES M, 1994, PROG BRAIN RES, V102, P395
[2]   NEW LOOK AT STATISTICAL-MODEL IDENTIFICATION [J].
AKAIKE, H .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1974, AC19 (06) :716-723
[3]   Partial directed coherence:: a new concept in neural structure determination [J].
Baccalá, LA ;
Sameshima, K .
BIOLOGICAL CYBERNETICS, 2001, 84 (06) :463-474
[4]   Integration of visual and auditory information by superior temporal sulcus neurons responsive to the sight of actions [J].
Barraclough, NE ;
Xiao, DK ;
Baker, CI ;
Oram, MW ;
Perrett, DI .
JOURNAL OF COGNITIVE NEUROSCIENCE, 2005, 17 (03) :377-391
[5]   AUDITORY-VISUAL INTERACTION IN SINGLE CELLS IN CORTEX OF SUPERIOR TEMPORAL SULCUS AND ORBITAL FRONTAL CORTEX OF MACAQUE MONKEY [J].
BENEVENTO, LA ;
FALLON, J ;
DAVIS, BJ ;
REZAK, M .
EXPERIMENTAL NEUROLOGY, 1977, 57 (03) :849-872
[6]   Bi-directional interactions between visual areas in the awake behaving cat [J].
Bernasconi, C ;
von Stein, A ;
Chiang, C ;
König, P .
NEUROREPORT, 2000, 11 (04) :689-692
[7]   Physiological and anatomical evidence for multisensory interactions in auditory cortex [J].
Bizley, Jennifer K. ;
Nodal, Fernando R. ;
Bajo, Victoria M. ;
Nelken, Israel ;
King, Andrew J. .
CEREBRAL CORTEX, 2007, 17 (09) :2172-2189
[8]   Cortical functional network organization from autoregressive modeling of local field potential oscillations [J].
Bressler, Steven L. ;
Richter, Craig G. ;
Chen, Yonghong ;
Ding, Mingzhou .
STATISTICS IN MEDICINE, 2007, 26 (21) :3875-3885
[9]   Beta oscillations in a large-scale sensorimotor cortical network: Directional influences revealed by Granger causality [J].
Brovelli, A ;
Ding, MZ ;
Ledberg, A ;
Chen, YH ;
Nakamura, R ;
Bressler, SL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (26) :9849-9854
[10]   VISUAL PROPERTIES OF NEURONS IN A POLYSENSORY AREA IN SUPERIOR TEMPORAL SULCUS OF THE MACAQUE [J].
BRUCE, C ;
DESIMONE, R ;
GROSS, CG .
JOURNAL OF NEUROPHYSIOLOGY, 1981, 46 (02) :369-384