SINGLE-LAYER SOLUTIONS FOR THE DIRICHLET PROBLEM FOR A QUASILINEAR SINGULARLY PERTURBED 2ND ORDER SYSTEM

被引:2
作者
SMITH, DR [1 ]
机构
[1] UNIV CALIF SAN DIEGO,LA JOLLA,CA 92093
关键词
D O I
10.1216/RMJ-1988-18-1-67
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:67 / 103
页数:37
相关论文
共 50 条
[11]   On the construction of single-peaked solutions to a singularly perturbed semilinear dirichlet problem [J].
Wei, JC .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1996, 129 (02) :315-333
[13]   Profile of solutions with sharp layers to some singularly perturbed quasilinear Dirichlet problems [J].
Guo, ZM ;
Webb, JRL .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2003, 5 (06) :883-920
[14]   ON CONVERGENCE IN THE MEAN OF SOLUTIONS OF SINGULARLY PERTURBED DEGENERATE ELLIPTIC-EQUATIONS OF THE 2ND ORDER [J].
ROMASKEVICH, LP .
RUSSIAN MATHEMATICAL SURVEYS, 1989, 44 (01) :249-250
[15]   On the location and profile of spike-layer solutions to a singularly perturbed semilinear Dirichlet problem: Intermediate solutions [J].
Ni, WM ;
Takagi, I ;
Wei, JC .
DUKE MATHEMATICAL JOURNAL, 1998, 94 (03) :597-618
[16]   A SINGULARLY PERTURBED 2ND ORDER EVOLUTION EQUATION WITH NONLOCAL NONLINEARITY [J].
ESHAM, BF .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 1987, 9 (9-10) :969-986
[17]   DIRICHLET PROBLEM FOR A DEGENERATING ELLIPTIC SYSTEM OF 2 2ND ORDER EQUATIONS [J].
ABDRAKHMANOV, A .
DOKLADY AKADEMII NAUK SSSR, 1978, 239 (01) :11-13
[18]   UNIFORM DIFFERENCE SCHEME FOR A SINGULARLY PERTURBED LINEAR 2ND ORDER HYPERBOLIC PROBLEM WITH ZEROTH ORDER REDUCED EQUATION [J].
苏煜城 ;
林平 .
AppliedMathematicsandMechanics(EnglishEdition), 1990, (04) :301-313
[20]   DISCONTINUITIES OF 2ND DERIVATIVES OF SINGLE-LAYER POTENTIALS [J].
MACK, SF .
MATHEMATISCHE ANNALEN, 1959, 137 (05) :417-426