AN EXAMPLE OF A 2-TERM ASYMPTOTICS FOR THE COUNTING FUNCTION OF A FRACTAL DRUM

被引:35
作者
FLECKINGERPELLE, J [1 ]
VASSILIEV, DG [1 ]
机构
[1] UNIV SUSSEX,SCH MATH & PHYS SCI,MATH SUBJECT GRP,BRIGHTON BN1 9QH,E SUSSEX,ENGLAND
关键词
D O I
10.2307/2154311
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study the spectrum of the Dirichlet Laplacian in a bounded domain OMEGA subset-of R(n) with fractal boundary partial derivative OMEGA. We construct an open set Q for which we can effectively compute the second term of the asymptotics of the ''counting function'' N(lambda, Q), the number of eigenvalues less than lambda. In this example, contrary to the M. V. Berry conjecture, the second asymptotic term is proportional to a periodic function of lnlambda, not to a constant. We also establish some properties of the zeta-function of this problem. We obtain asymptotic inequalities for more general domains and in particular for a connected open set O derived from Q. Analogous periodic functions still appear in our inequalities. These results have been announced in [FV].
引用
收藏
页码:99 / 116
页数:18
相关论文
共 25 条
  • [1] BERRY MV, 1980, P S PURE MATH, V36, P13
  • [2] CAN ONE HEAR THE DIMENSION OF A FRACTAL
    BROSSARD, J
    CARMONA, R
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1986, 104 (01) : 103 - 122
  • [3] COURANT R, 1953, METHODS MATH PHYSICS, V1
  • [4] SPECTRUM OF POSITIVE ELLIPTIC OPERATORS AND PERIODIC BICHARACTERISTICS
    DUISTERMAAT, JJ
    GUILLEMIN, VW
    [J]. INVENTIONES MATHEMATICAE, 1975, 29 (01) : 39 - 79
  • [5] Falconer, 1985, GEOMETRY FRACTAL SET
  • [6] FLECKINGER J, 1990, CR ACAD SCI I-MATH, V311, P867
  • [7] GAUSS CF, 1901, DISQUISITIONES ARITH
  • [8] IVRI VY, 1984, LECTURES NOTES MATH, V1100
  • [9] Ivrii V., 1980, FUNKTSIONAL ANAL PRI, V14, P25, DOI DOI 10.1007/BF01086550
  • [10] LAPIDUS ML, 1990, CR ACAD SCI I-MATH, V310, P343