Inverse Eigenvalue Problem with Non-simple Eigenvalues for Damped Vibration Systems

被引:0
作者
Moghadam, M. Mohseni [1 ]
Tajaddini, A. [2 ]
机构
[1] Mahani Math Res Ctr, Kerman 7616914111, Iran
[2] Shahid Bahonar Univ Kerman, Dept Math, Kerman 7616914111, Iran
来源
JOURNAL OF INFORMATICS AND MATHEMATICAL SCIENCES | 2009年 / 1卷 / 2-3期
关键词
Inverse problem; Quadratic form; Non-simple eigenvalues;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we will present a general form of real and symmetric n x n matrices M, C and K for a quadratic inverse eigenvalue problem QIEP: Q(lambda) Xi ( lambda M-2 + lambda C + K) x = 0, so that Q(lambda) has a prescribed set of k eigenvalues with algebraic multiplicity ni, i = 1, ... , k ( which 2n(1) + 2n(2) + ... + 2n(l) +n1=1+1 + ... + nk = 2n). This paper generalizes the method of inverse problem for selfadjoint linear pencils, to self- adjoint quadratic pencils Q(lambda). It is shown that this inverse problem involves certain free parameters. Via appropriate choice of free variables in the general form of QIEP, we solve a QIEP.
引用
收藏
页码:91 / 97
页数:7
相关论文
共 7 条
[1]   SPECTRAL DECOMPOSITION OF REAL SYMMETRIC QUADRATIC λ-MATRICES AND ITS APPLICATIONS [J].
Chu, Moody T. ;
Xu, Shu-Fang .
MATHEMATICS OF COMPUTATION, 2009, 78 (265) :293-313
[2]   Spillover phenomenon in quadratic model updating [J].
Chu, Moody T. ;
Datta, Biswa ;
Lin, Wen-Wei ;
Xu, Shufang .
AIAA JOURNAL, 2008, 46 (02) :420-428
[3]  
Gohberge I., 1982, MATRIX POLYNOMIALS
[4]   SOME RESULTS ON THE NATURE OF EIGENVALUES OF DISCRETE DAMPED LINEAR-SYSTEMS [J].
INMAN, DJ ;
ANDRY, AN .
JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 1980, 47 (04) :927-930
[5]  
Kuo Y.-C., 200512 NCTS NAT TSIN
[6]   Inverse spectral problems for semisimple damped vibrating systems [J].
Lancaster, Peter .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2007, 29 (01) :279-301
[7]   The quadratic eigenvalue problem [J].
Tisseur, F ;
Meerbergen, K .
SIAM REVIEW, 2001, 43 (02) :235-286