HOMOGENEOUS SPACES OF AN INFINITE NUMBER OF DIMENSIONS

被引:0
|
作者
SKLYARENKO, E
机构
来源
DOKLADY AKADEMII NAUK SSSR | 1961年 / 141卷 / 04期
关键词
D O I
暂无
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
引用
收藏
页码:811 / &
相关论文
共 50 条
  • [41] Splitting submanifolds in rational homogeneous spaces of Picard number one
    Ding, Cong
    MATHEMATISCHE ZEITSCHRIFT, 2022, 301 (01) : 1211 - 1235
  • [42] Limit theorems for radial random walks on homogeneous spaces with growing dimensions
    Voit, Michael
    INFINITE DIMENSIONAL HARMONIC ANALYSIS IV, 2009, : 308 - 326
  • [43] Regarding an infinite number of dimensions inferior to that of the M. Hilbert space
    Kunagui, R
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES, 1928, 187 : 876 - 878
  • [44] Generation of flow cytometry data files with a potentially infinite number of dimensions
    Pedreira, C.
    Costa, E.
    Barrena, S.
    Lecrevisse, Q.
    Almeida, J.
    van Dongen, J.
    Orfao, A.
    INTERNATIONAL JOURNAL OF LABORATORY HEMATOLOGY, 2008, 30 : 114 - 114
  • [45] REPRESENTATION OF COMPACTS HAVING AN INFINITE NUMBER OF DIMENSIONS AS AN INVERSE LIMIT OF POLYHEDRA
    SKLIARENKO, EG
    DOKLADY AKADEMII NAUK SSSR, 1960, 134 (04): : 773 - 775
  • [46] Generation of flow cytometry data files with a potentially infinite number of dimensions
    Pedreira, Carlos E.
    Costa, Elaine S.
    Barrena, Susana
    Lecrevisse, Quentin
    Almeida, Julia
    van Dongen, Jacques J. M.
    Orfao, Alberto
    CYTOMETRY PART A, 2008, 73A (09) : 834 - 846
  • [47] The List-Chromatic Number of Infinite Graphs Defined on Euclidean Spaces
    Péter Komjáth
    Discrete & Computational Geometry, 2011, 45 : 497 - 502
  • [48] The List-Chromatic Number of Infinite Graphs Defined on Euclidean Spaces
    Komjath, Peter
    DISCRETE & COMPUTATIONAL GEOMETRY, 2011, 45 (03) : 497 - 502
  • [49] Ray Holder-continuity for fractional Sobolev spaces in infinite dimensions and applications
    Ren, JG
    Röckner, M
    PROBABILITY THEORY AND RELATED FIELDS, 2000, 117 (02) : 201 - 220
  • [50] The Dolbeault complex in infinite dimensions III. Sheaf cohomology in Banach spaces
    László Lempert
    Inventiones mathematicae, 2000, 142 : 579 - 603