On Some Properties of the Upper and Lower Central Series

被引:0
作者
Kurdachenko, Leonid A. [1 ]
Subbotin, Igor Ya. [2 ]
机构
[1] Natl Univ Dnepropetrovsk, Dept Algebra, Gagarin Prospect 72, UA-49010 Dnepropetrovsk 10, Ukraine
[2] Natl Univ, Dept Math & Nat Sci, Los Angeles, CA 90045 USA
关键词
Baer theorem; Schur theorem; Nilpotent residual; Hypercenter; Lower hypocenter;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
R. Baer has proved that if in a group G the factor-group G / zeta(n) (G) by a member zeta(n) (G) of an upper central series is finite for some positive integer n, then the member gamma(n+1)(G) of the lower central series of G is also finite. In particular in this case, the nilpotent residual of G is finite. The following two questions are in a logical connection with the Baer theorem. (a) Let | G / zeta k (G)| = t. Is there the function beta(1) such that | gamma(n + 1)(G)| = beta 1(t, k)? (b) Suppose that a group G has finite central length and the upper hypercenter of G has finite index m. Is there the function beta(2) such that the order of nilpotent residual is at most beta(2)(m, zl(G)) (here zl(G) is the length of the upper central series of G)? The current article provides the answer on these questions.
引用
收藏
页码:547 / 554
页数:8
相关论文
共 15 条
[1]  
ADIAN SI, 1971, MATH USSR IZV, V5, P475
[2]  
Baer R., 1952, MATH ANN, V124, P161, DOI 10.1007/BF01343558
[3]  
Duan Z.Y., 1998, SE ASIAN B MATH, V22, P273
[4]   THE SCHUR PROPERTY AND GROUPS WITH UNIFORM CONJUGACY CLASSES [J].
FRANCIOSI, S ;
DEGIOVANNI, F .
JOURNAL OF ALGEBRA, 1995, 174 (03) :823-847
[5]  
Kaloujnin L. A., 1953, BERICHT MATH TAGUNG, V14, P164
[6]  
Kurdachenko L.A., 2000, SE ASIAN B MATH, V24, P565
[7]  
Kurdachenko L. A., 2002, SE ASIAN B MATH, V26, P773
[8]  
Kurdachenko L. A., 1993, INFINITE GROUPS ADJO
[9]   The exponents of central factor and commutator groups [J].
Mann, Avinoam .
JOURNAL OF GROUP THEORY, 2007, 10 (04) :435-436
[10]  
Schur J, 1904, J REINE ANGEW MATH, V127, P20