Landslide Susceptibility Analysis and Verification using Artificial Neural Network in the Kangneung Area

被引:0
|
作者
Lee, Saro [1 ]
Lee, Moung-Jin [2 ]
Won, Joong-Sun [2 ]
机构
[1] Korea Inst Geosci & Mineral Resources KIGAM, Geosci Informat Ctr, Daejeon 305350, South Korea
[2] Yonsei Univ, Dept Earth Syst Sci, Seoul 120749, South Korea
来源
ECONOMIC AND ENVIRONMENTAL GEOLOGY | 2005年 / 38卷 / 01期
关键词
GIS; Landslide; Susceptibility; Artificial Neural Network; Kangneung;
D O I
暂无
中图分类号
P5 [地质学];
学科分类号
0709 ; 081803 ;
摘要
The purpose of this study is to make and validate landslide susceptibility map using artificial neural network and GIS in Kangneung area. For this, topography, soil, forest, geology and land cover data sets were constructed as a spatial database in GIS. From the database, slope, aspect, curvature, water system, topographic type, soil texture, soil material, soil drainage, soil effective thickness, wood type, wood age, wood diameter, forest density, lithology, land cover, and lineament were used as the landslide occurrence factors. The weight of the each factor was calculated, and applied to make landslide susceptibility maps using artificial neural network. Then the maps were validated using rate curve method which can predict qualitatively the landslide occurrence. The landslide susceptibility map can be used to reduce associated hazards, and to plan land use and construction as basic data.
引用
收藏
页码:33 / 43
页数:11
相关论文
共 50 条