Transfer and local density for Hermitian lattices

被引:1
作者
Fiori, Andrew [1 ]
机构
[1] Univ Calgary, Math & Stat, 612 Campus Pl NW,2500 Univ Dr NW, Calgary, AB T2N 1N4, Canada
来源
ANNALES MATHEMATIQUES DU QUEBEC | 2018年 / 42卷 / 01期
基金
加拿大自然科学与工程研究理事会;
关键词
Lattices; Transfer; Restriction; Local densities; Representation densities;
D O I
10.1007/s40316-017-0083-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study the integral structure of lattices over finite extensions of which arise from restriction or transfer from a lattice over a finite extension. We describe explicitly the structure of the resulting lattices. Special attention is given to the case of lattices whose quadratic forms arise from Hermitian forms. Then, in the case of Hermitian lattices where the final lattice is over Z(p) we focus on the problem of computing the local densities.
引用
收藏
页码:49 / 78
页数:30
相关论文
共 22 条
[1]   Group schemes and local densities of quadratic lattices in residue characteristic 2 [J].
Cho, Sungmun .
COMPOSITIO MATHEMATICA, 2015, 151 (05) :793-827
[2]   LOW-DIMENSIONAL LATTICES .4. THE MASS FORMULA [J].
CONWAY, JH ;
SLOANE, NJA .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1988, 419 (1857) :259-286
[3]   Arithmetic volumes for lattices over p-adic rings [J].
Fiori, Andrew .
JOURNAL OF NUMBER THEORY, 2014, 141 :343-374
[4]   Characterization of special points of orthogonal symmetric spaces [J].
Fiori, Andrew .
JOURNAL OF ALGEBRA, 2012, 372 :397-419
[5]  
Gan WT, 2000, DUKE MATH J, V105, P497
[6]   Lattice Methods for Algebraic Modular Forms on Classical Groups [J].
Greenberg, Matthew ;
Voight, John .
COMPUTATIONS WITH MODULAR FORMS, 2014, 6 :147-179
[7]  
Gritsenko V, 2008, DOC MATH, V13, P1
[8]   Algebraic modular forms [J].
Gross, BH .
ISRAEL JOURNAL OF MATHEMATICS, 1999, 113 (1) :61-93
[9]  
Hanke J, 2005, J REINE ANGEW MATH, V584, P1
[10]   An explicit formula for Siegel series [J].
Katsurada, H .
AMERICAN JOURNAL OF MATHEMATICS, 1999, 121 (02) :415-452