INTEGRABLE HAMILTONIAN-SYSTEMS AND THE PAINLEVE PROPERTY

被引:200
作者
BOUNTIS, T
SEGUR, H
VIVALDI, F
机构
[1] AERONAUT RES ASSOC PRINCETON,PRINCETON,NJ 08540
[2] GEORGIA INST TECHNOL,SCH PHYS,ATLANTA,GA 30332
来源
PHYSICAL REVIEW A | 1982年 / 25卷 / 03期
关键词
D O I
10.1103/PhysRevA.25.1257
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
引用
收藏
页码:1257 / 1264
页数:8
相关论文
共 40 条
[1]   NON-LINEAR EVOLUTION EQUATIONS AND ORDINARY DIFFERENTIAL-EQUATIONS OF PAINLEVE TYPE [J].
ABLOWITZ, MJ ;
RAMANI, A ;
SEGUR, H .
LETTERE AL NUOVO CIMENTO, 1978, 23 (09) :333-338
[2]   A CONNECTION BETWEEN NON-LINEAR EVOLUTION-EQUATIONS AND ORDINARY DIFFERENTIAL-EQUATIONS OF P-TYPE .1. [J].
ABLOWITZ, MJ ;
RAMANI, A ;
SEGUR, H .
JOURNAL OF MATHEMATICAL PHYSICS, 1980, 21 (04) :715-721
[3]   EXPLICIT SOLUTIONS OF FISHERS EQUATION FOR A SPECIAL WAVE SPEED [J].
ABLOWITZ, MJ ;
ZEPPETELLA, A .
BULLETIN OF MATHEMATICAL BIOLOGY, 1979, 41 (06) :835-840
[4]  
ABLOWITZ MJ, 1977, PHYS REV LETT, V38, P103
[5]  
ADLER M, UNPUB MATH RES CTR T
[6]  
AIZAWA Y, 1972, J PHYS SOC JPN, V32, P1636, DOI 10.1143/JPSJ.32.1636
[7]  
[Anonymous], COMMUNICATION
[8]  
Arnold V., 1968, ERGODIC PROBLEMS CLA, P6
[9]  
BERRY M, 1978, TOPICS NONLINEAR DYN, V46
[10]   STOCHASTIC TRANSITION IN UNEQUAL-MASS TODA LATTICE [J].
CASATI, G ;
FORD, J .
PHYSICAL REVIEW A, 1975, 12 (04) :1702-1709