POSITIVE SOLUTIONS TO SEMILINEAR POLYHARMONIC DIRICHLET PROBLEMS INVOLVING CRITICAL SOBOLEV EXPONENTS

被引:23
作者
GRUNAU, HC [1 ]
机构
[1] UNIV BAYREUTH,INST MATH,D-95440 BAYREUTH,GERMANY
来源
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS | 1995年 / 3卷 / 02期
关键词
D O I
10.1007/s005260050014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We are concerned with the semilinear polyharmonic model problem (-Delta)(K) upsilon = lambda upsilon + upsilon\upsilon\(s-1) in B, D(alpha)upsilon\partial derivative B = 0 for \alpha\ less than or equal to K - 1. Here K is an element of N, B is the unit ball in R(n), n > 2K, s = n+2K/n-2K is the critical Sobolev exponent. Let lambda(1) denote the first Dirichlet eigenvalue of (-Delta)(K) in B. The existence of a positive radial solution upsilon is shown for - lambda is an element of (0, lambda(1)), if n greater than or equal to 4K, - lambda is an element of (($) over bar lambda, lambda(1)) for some ($) over bar lambda = ($) over bar lambda(n, K) is an element of (0, lambda(1)), if 2K + 1 less than or equal to n less than or equal to 4K - 1. The crucial point of the present note is to show the positivity of a solution upsilon with help of the positivity of Green's function for (-Delta)(K) in balls.
引用
收藏
页码:243 / 252
页数:10
相关论文
共 15 条
[1]  
BERNIS F, IN PRESS J DIFFER EQ
[2]  
Boggio T., 1905, REND CIRC MAT PALERM, V20, P97, DOI 10.1007/BF03014033
[3]   POSITIVE SOLUTIONS OF NON-LINEAR ELLIPTIC-EQUATIONS INVOLVING CRITICAL SOBOLEV EXPONENTS [J].
BREZIS, H ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1983, 36 (04) :437-477
[4]   CRITICAL EXPONENTS, CRITICAL DIMENSIONS AND THE BIHARMONIC OPERATOR [J].
EDMUNDS, DE ;
FORTUNATO, D ;
JANNELLI, E .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1990, 112 (03) :269-289
[5]  
GRUNAU HC, IN PRESS B UNIONE MA
[6]  
GRUNAU HC, 1991, ANALYSIS, V11, P83
[7]  
KOZLOV VA, 1990, MATH USSR IZV, V34, P337
[8]  
Lions P.-L., 1985, LIMIT CASE PART, V1, P145, DOI 10.4171/RMI/6
[9]  
LUCKHAUS S, 1979, J REINE ANGEW MATH, V306, P192
[10]   CRITICAL SEMILINEAR BIHARMONIC-EQUATIONS IN R(N) [J].
NOUSSAIR, ES ;
SWANSON, CA ;
YANG, JF .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1992, 121 :139-148