HELE-SHAW TYPE FLOWS IN RN

被引:15
作者
BEGEHR, H [1 ]
GILBERT, RP [1 ]
机构
[1] UNIV DELAWARE,DEPT MATH,NEWARK,DE 19716
关键词
D O I
10.1016/0362-546X(86)90012-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:65 / 85
页数:21
相关论文
共 22 条
[1]   DOMAINS ON WHICH ANALYTIC-FUNCTIONS SATISFY QUADRATURE IDENTITIES [J].
AHARONOV, D ;
SHAPIRO, HS .
JOURNAL D ANALYSE MATHEMATIQUE, 1976, 30 :39-73
[2]   REGULARITY OF FREE BOUNDARIES IN HIGHER DIMENSIONS [J].
CAFFARELLI, LA .
ACTA MATHEMATICA, 1977, 139 (3-4) :155-184
[3]  
CAFFARELLI LA, 1980, COMMUN PART DIFF EQ, V5, P427
[4]   THE ILL-POSED HELE-SHAW MODEL AND THE STEFAN PROBLEM FOR SUPERCOOLED WATER [J].
DIBENEDETTO, E ;
FRIEDMAN, A .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1984, 282 (01) :183-204
[5]  
Elliot C.M., 1982, Weak and Variational Methods for Moving Boundary Problems
[6]   A VARIATIONAL INEQUALITY APPROACH TO HELE-SHAW FLOW WITH A MOVING BOUNDARY [J].
ELLIOTT, CM ;
JANOVSKY, V .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1981, 88 :93-107
[7]  
FASANO A, 1980, Q APPL MATH, V38, P439
[8]  
FRIEDMAN A, 1975, INDIANA U MATH J, V24, P1005, DOI 10.1512/iumj.1975.24.24086
[9]  
FRIEDMAN A, 1976, ARCH RATION MECH AN, V61, P97, DOI 10.1007/BF00249700
[10]  
Friedman A, 1982, Variational Principles and Free Boundary Problems