ANALYSIS AND EXPERIMENTS IN SUPPORT OF INERTIAL CONFINEMENT FUSION-REACTOR CONCEPTS

被引:6
|
作者
MOSES, GA
PETERSON, RR
MACFARLANE, JJ
机构
[1] Department of Nuclear Engineering and Engineering Physics, Fusion Technology Institute, University of Wisconsin-Madison, Madison
来源
PHYSICS OF FLUIDS B-PLASMA PHYSICS | 1991年 / 3卷 / 08期
关键词
D O I
10.1063/1.859599
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Cost-effective and safe containment of high-yield inertial confinement fusion (ICF) microexplosions in near-term laboratory microfusion facilities (LMF) and longer-term reactors requires an understanding of the interaction of target-generated x rays and ionic debris with surrounding buffer gases and the first solid surface that faces the target. The microfireball plasma created when a target explodes in a gas atmosphere of 1-10 Torr is not in local thermodynamic equilibrium. The plasma state must be determined by coupling the radiation field to the atomic level population calculation in order to correctly predict the surface emission of the plasma. Conditions similar to those predicted for ICF target chambers can be simulated using the SATURN x-ray simulator facility [Proceedings of the 2nd International Conference on Dense Z-Pinches, AIP Conf. Proc. 195 (AIP, New York, 1989), p. 3]. Aluminum and graphite samples that represent possible first wall materials were tested in SATURN. Coated aluminum samples and four-directional graphite weaves in a carbon matrix survived the tests.
引用
收藏
页码:2324 / 2330
页数:7
相关论文
共 50 条
  • [21] Nuclear diagnostics in support of inertial confinement fusion experiments
    Moran, MJ
    Hall, J
    REVIEW OF SCIENTIFIC INSTRUMENTS, 1997, 68 (01): : 521 - 526
  • [22] INTEGRAL EXPERIMENTS FOR FUSION-REACTOR DESIGN - ANALYSIS
    SANTORO, RT
    ALSMILLER, RG
    BARNES, JM
    OBLOW, EM
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1979, 24 (07): : 880 - 880
  • [23] REACTION PHYSICS AND MISSION CAPABILITIES OF THE MAGNETICALLY INSULATED INERTIAL CONFINEMENT FUSION-REACTOR
    KAMMASH, T
    GALBRAITH, DL
    JOURNAL OF PROPULSION AND POWER, 1990, 6 (04) : 412 - 415
  • [24] AN OVERVIEW OF INERTIAL FUSION-REACTOR DESIGN
    MONSLER, MJ
    HOVINGH, J
    COOK, DL
    FRANK, TG
    MOSES, GA
    NUCLEAR TECHNOLOGY-FUSION, 1981, 1 (03): : 302 - 358
  • [25] AN OVERVIEW OF INERTIAL FUSION-REACTOR DESIGN
    MONSLER, MJ
    HOVINGH, J
    COOK, DL
    FRANK, TG
    MOSES, GA
    KVANTOVAYA ELEKTRONIKA, 1983, 10 (11): : 2166 - 2228
  • [26] INSTABILITY ANALYSIS OF A MAGNETICALLY PROTECTED CAVITY IN A D-HE-3 INERTIAL CONFINEMENT FUSION-REACTOR
    NAKASHIMA, H
    INOUE, Y
    KANDA, Y
    NAKAO, Y
    OHNISHI, M
    FUSION TECHNOLOGY, 1992, 22 (01): : 73 - 81
  • [27] A COMPARISON OF DIFFERENT CONCEPTS OF INTEGRAL EXPERIMENTS FOR FUSION-REACTOR BLANKET DESIGN
    GOLDFELD, A
    TSECHANSKI, A
    SHANI, G
    NUCLEAR SCIENCE AND ENGINEERING, 1985, 90 (03) : 330 - 341
  • [28] LIBRA - A LIGHT-ION BEAM INERTIAL CONFINEMENT FUSION-REACTOR CONCEPTUAL DESIGN
    MOSES, GA
    KULCINSKI, GL
    BRUGGINK, D
    ENGELSTAD, R
    LOVELL, E
    MACFARLANE, J
    MUSICKI, Z
    PETERSON, R
    SAWAN, M
    SVIATOSLAVSKY, I
    WITTENBERG, L
    KESSLER, G
    VONMOLLENDORFF, U
    STEIN, E
    SMITH, I
    CORCORAN, P
    NISHIMOTO, H
    FOCKLER, J
    COOK, D
    OLSON, R
    LASER AND PARTICLE BEAMS, 1989, 7 : 721 - 731
  • [29] COMPARATIVE-STUDY OF EXPLORATORY REACTOR CONCEPTS FOR INERTIAL CONFINEMENT FUSION
    MANISCALCO, JA
    MEIER, WR
    TRANSACTIONS OF THE AMERICAN NUCLEAR SOCIETY, 1977, 26 : 62 - 62
  • [30] THE DIODE-PUMPED NEODYMIUM LASER-DRIVEN INERTIAL CONFINEMENT FUSION-REACTOR
    SEIFRITZ, W
    FUSION TECHNOLOGY, 1991, 20 (03): : 295 - 303