ANALYSIS AND EXPERIMENTS IN SUPPORT OF INERTIAL CONFINEMENT FUSION-REACTOR CONCEPTS

被引:6
|
作者
MOSES, GA
PETERSON, RR
MACFARLANE, JJ
机构
[1] Department of Nuclear Engineering and Engineering Physics, Fusion Technology Institute, University of Wisconsin-Madison, Madison
来源
PHYSICS OF FLUIDS B-PLASMA PHYSICS | 1991年 / 3卷 / 08期
关键词
D O I
10.1063/1.859599
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Cost-effective and safe containment of high-yield inertial confinement fusion (ICF) microexplosions in near-term laboratory microfusion facilities (LMF) and longer-term reactors requires an understanding of the interaction of target-generated x rays and ionic debris with surrounding buffer gases and the first solid surface that faces the target. The microfireball plasma created when a target explodes in a gas atmosphere of 1-10 Torr is not in local thermodynamic equilibrium. The plasma state must be determined by coupling the radiation field to the atomic level population calculation in order to correctly predict the surface emission of the plasma. Conditions similar to those predicted for ICF target chambers can be simulated using the SATURN x-ray simulator facility [Proceedings of the 2nd International Conference on Dense Z-Pinches, AIP Conf. Proc. 195 (AIP, New York, 1989), p. 3]. Aluminum and graphite samples that represent possible first wall materials were tested in SATURN. Coated aluminum samples and four-directional graphite weaves in a carbon matrix survived the tests.
引用
收藏
页码:2324 / 2330
页数:7
相关论文
共 50 条
  • [1] SHOCK ATTENUATION IN AN INERTIAL CONFINEMENT FUSION-REACTOR
    GLENN, LA
    AIP CONFERENCE PROCEEDINGS, 1982, (78) : 510 - 514
  • [2] CONSIDERATIONS FOR INERTIAL CONFINEMENT FUSION-REACTOR DESIGN
    BOOTH, LA
    ATOMKERNENERGIE-KERNTECHNIK, 1980, 36 (03): : 211 - 212
  • [3] TRANSPORT PROCESSES IN AN INERTIAL CONFINEMENT FUSION-REACTOR
    GLENN, LA
    NUCLEAR ENGINEERING AND DESIGN, 1981, 64 (03) : 375 - 387
  • [4] THE PULSE STAR INERTIAL CONFINEMENT FUSION-REACTOR
    BLINK, JA
    HOGAN, WJ
    FUSION TECHNOLOGY, 1985, 8 (01): : 1204 - 1207
  • [5] INERTIAL CONFINEMENT FUSION-REACTOR SYSTEM INTEGRATION
    BOHACHEVSKY, IO
    FRANK, TG
    TRANSACTIONS OF THE AMERICAN NUCLEAR SOCIETY, 1980, 34 (JUN): : 57 - 58
  • [6] PARAMETRIC STUDIES OF AN INERTIAL CONFINEMENT FUSION-REACTOR
    ZUCKERMAN, DS
    CAROSELLA, LA
    TRANSACTIONS OF THE AMERICAN NUCLEAR SOCIETY, 1979, 33 (NOV): : 54 - 55
  • [7] SHOCK ATTENUATION IN AN INERTIAL CONFINEMENT FUSION-REACTOR
    GLENN, LA
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1981, 26 (04): : 662 - 662
  • [8] NUCLEAR ASPECTS AND DESIGN OF AN INERTIAL CONFINEMENT FUSION-REACTOR
    NAKAI, S
    NAKASHIMA, H
    FUSION ENGINEERING AND DESIGN, 1991, 16 : 173 - 182
  • [9] TRENDS AND DEVELOPMENTS IN MAGNETIC CONFINEMENT FUSION-REACTOR CONCEPTS
    BAKER, CC
    CARLSON, GA
    KRAKOWSKI, RA
    NUCLEAR TECHNOLOGY-FUSION, 1981, 1 (01): : 5 - 78
  • [10] BLANKET OPTIMIZATION STUDIES FOR THE HYLIFE INERTIAL CONFINEMENT FUSION-REACTOR
    MEIER, WR
    MORSE, EC
    FUSION TECHNOLOGY, 1985, 8 (03): : 2681 - 2695