ISOLATION OF THE GENE ENCODING THE SACCHAROMYCES-CEREVISIAE CENTROMERE-BINDING PROTEIN CP1

被引:151
作者
BAKER, RE
MASISON, DC
机构
[1] Dept. Molec. Genet. and Microbiol., Univ. of Massachusetts Med. School, Worcester, MA 01655
关键词
D O I
10.1128/MCB.10.6.2458
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
CP1 is a sequence-specific DNA-binding protein of the yeast Saccharomyces cerevisiae which recognizes the highly conserved DNA element I (CDEI) of yeast centromeres. We cloned and sequenced the gene encoding CP1. The gene codes for a protein of molecular weight 39,400. When expressed in Escherichia coli, the CP1 gene directed the synthesis of a CDEI-binding protein having the same gel mobility as purified yeast CP1. We have given the CP1 gene the genetic designation CEP1 (centromere protein 1). CEP1 was mapped and found to reside on chromosome X, 2.0 centimorgans from SUP4. Strains were constructed in which most of CEP1 was deleted. Such strains lacked detectable CP1 activity and were viable; however, CEP1 gene disruption resulted in a 35% increase in cell doubling time and a ninefold increase in the rate of mitotic chromosome loss. An unexpected consequence of CP1 gene disruption was methionine auxotrophy genetically linked to cep1. This result and the recent finding that CDEI sites in the MET25 promoter are required to activate transcription (D. Thomas, H. Cherest, and Y. Surdin-Kerjan, J. Mol. Biol. 9:3292-3298, 1989) suggest that CP1 is both a kinetochore protein and a transcription factor.
引用
收藏
页码:2458 / 2467
页数:10
相关论文
共 46 条
[1]   INTERNAL AMINO-ACID SEQUENCE-ANALYSIS OF PROTEINS SEPARATED BY ONE-DIMENSIONAL OR TWO-DIMENSIONAL GEL-ELECTROPHORESIS AFTER INSITU PROTEASE DIGESTION ON NITROCELLULOSE [J].
AEBERSOLD, RH ;
LEAVITT, J ;
SAAVEDRA, RA ;
HOOD, LE ;
KENT, SBH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1987, 84 (20) :6970-6974
[2]   VECTORS BEARING A HYBRID TRP-LAC PROMOTER USEFUL FOR REGULATED EXPRESSION OF CLONED GENES IN ESCHERICHIA-COLI [J].
AMANN, E ;
BROSIUS, J ;
PTASHNE, M .
GENE, 1983, 25 (2-3) :167-178
[3]   NUCLEOTIDE-SEQUENCE OF YEAST LEU2 SHOWS 5'-NONCODING REGION HAS SEQUENCES COGNATE TO LEUCINE [J].
ANDREADIS, A ;
HSU, YP ;
KOHLHAW, GB ;
SCHIMMEL, P .
CELL, 1982, 31 (02) :319-325
[4]  
BAKER RE, 1986, J BIOL CHEM, V261, P5275
[5]  
BAKER RE, 1989, J BIOL CHEM, V264, P10843
[6]   ISOLATION OF A SACCHAROMYCES-CEREVISIAE CENTROMERE DNA-BINDING PROTEIN, ITS HUMAN HOMOLOG, AND ITS POSSIBLE ROLE AS A TRANSCRIPTION FACTOR [J].
BRAM, RJ ;
KORNBERG, RD .
MOLECULAR AND CELLULAR BIOLOGY, 1987, 7 (01) :403-409
[7]   MECHANISM OF ACTION OF THE LEXA GENE-PRODUCT [J].
BRENT, R ;
PTASHNE, M .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA-BIOLOGICAL SCIENCES, 1981, 78 (07) :4204-4208
[8]   2 DNA-BINDING FACTORS RECOGNIZE SPECIFIC SEQUENCES AT SILENCERS, UPSTREAM ACTIVATING SEQUENCES, AUTONOMOUSLY REPLICATING SEQUENCES, AND TELOMERES IN SACCHAROMYCES-CEREVISIAE [J].
BUCHMAN, AR ;
KIMMERLY, WJ ;
RINE, J ;
KORNBERG, RD .
MOLECULAR AND CELLULAR BIOLOGY, 1988, 8 (01) :210-225
[9]   PURIFICATION OF A YEAST CENTROMERE-BINDING PROTEIN THAT IS ABLE TO DISTINGUISH SINGLE BASE-PAIR MUTATIONS IN ITS RECOGNITION SITE [J].
CAI, MJ ;
DAVIS, RW .
MOLECULAR AND CELLULAR BIOLOGY, 1989, 9 (06) :2544-2550
[10]   A SPLIT BINDING-SITE FOR TRANSCRIPTION FACTOR-TAU ON THE TRANSFER RNA3GLU GENE [J].
CAMIER, S ;
GABRIELSEN, O ;
BAKER, R ;
SENTENAC, A .
EMBO JOURNAL, 1985, 4 (02) :491-500