NEW THEOREMS ON THE MEAN FOR SOLUTIONS OF THE HELMHOLTZ-EQUATION

被引:4
|
作者
VOLCHKOV, VV
机构
关键词
D O I
10.1070/SM1994v079n02ABEH003500
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is proved that the solutions of the equation Delta u+u = 0 are characterized by vanishing of integrals over all balls in R(n) with radii belonging to the zero set of the Bessel function J(n/2). This result enables us to get a solution of the Pompeiu problem on the class of functions of slow growth in terms of approximation in L(R(n)) by linear combinations with special radii.
引用
收藏
页码:281 / 286
页数:6
相关论文
共 50 条