3-PERIODIC ORBIT IMPLYING 6831726876986508 85-PERIODIC ORBITS - INFIMUMS OF NUMBERS OF PERIODIC-ORBITS IN CONTINUOUS-FUNCTIONS

被引:0
作者
MAI, JH
机构
来源
SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY & TECHNOLOGICAL SCIENCES | 1991年 / 34卷 / 10期
关键词
CONTINUOUS FUNCTION; PERIODIC ORBIT; SARKOVSKIIS THEOREM; UNIMODAL ORBIT;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For any continuous function f on the interval I = [0, 1] and any m, n greater-than-or-equal-to 1, let N(n, f) denote the number of n-periodic orbits in f. Put N(n, m) = min{N(n, f):f is a continuous function on I, and N(m, f) greater-than-or-equal-to 1}. The famous Sarkovskii's theorem can be stated as follows: If n is part of m, then N(n,m) greater-than-or-equal-to 1. In this paper, we further obtain analytic expressions of the precise value of N(n, m) for all positive integers m and n, which are convenient for computing.
引用
收藏
页码:1194 / 1204
页数:11
相关论文
共 9 条
[1]  
[Anonymous], UKR MAT Z
[2]  
[Anonymous], 1980, ITERATED MAPS INTERV
[3]  
BALDWIN S, GENERALIZATIONS THEO
[4]   SHIFT-MAXIMAL SEQUENCES IN FUNCTION ITERATION - EXISTENCE, UNIQUENESS, AND MULTIPLICITY [J].
BEYER, WA ;
MAULDIN, RD ;
STEIN, PR .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1986, 115 (02) :305-362
[5]  
BLOCK L, 1987, ERGOD THEOR DYN SYST, V7, P161
[6]  
Block L., 1983, ERGOD THEOR DYN SYST, V3, P533
[7]  
MAI JH, 1990, SCI CHINA SER A, V33, P1182
[8]  
ZHANG JZ, 1990, APPLIED MATH MECHANI, V11, P2
[9]  
ZHANG JZ, 1989, APPLIED MATH MECHANI, V10, P11