PHONON-SPECTRUM OF THE ONE-DIMENSIONAL 2-COMPONENT QUASI-PERIODIC CRYSTAL

被引:6
作者
GUMEN, LN
USATENKO, OV
机构
[1] Institute of Radiophysics and Electronics, Academy of Sciences of the Ukrainian Ssr
来源
PHYSICA STATUS SOLIDI B-BASIC RESEARCH | 1990年 / 162卷 / 02期
关键词
D O I
10.1002/pssb.2221620208
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
The properties of an one-dimensional quasicrystal consisting of two types of atoms with masses m and M, and with nearest neighbour elastic interaction constants k and K, are studied. The velocity of long-wavelength phonons and the dependence of the maximum oscillation frequency on lattice parameters are derived analytically. The classification procedure of quasicrystal spectra is performed in the limit of large difference of masses and elastic constants. Five different limiting kinds of the spectra are shown to occur.
引用
收藏
页码:387 / 394
页数:8
相关论文
共 9 条
  • [1] THE PROPERTIES OF ONE-DIMENSIONAL QUASI-PERIODIC LATTICE PHONON-SPECTRUM
    CHEN, B
    GONG, CD
    [J]. ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1987, 69 (01): : 103 - 109
  • [2] KALUGIN PA, 1986, ZH EKSP TEOR FIZ+, V91, P692
  • [3] CANTOR SPECTRUM FOR AN ALMOST PERIODIC SCHRODINGER-EQUATION AND A DYNAMICAL MAP
    KOHMOTO, M
    OONO, Y
    [J]. PHYSICS LETTERS A, 1984, 102 (04) : 145 - 148
  • [4] LOCALIZATION PROBLEM IN ONE DIMENSION - MAPPING AND ESCAPE
    KOHMOTO, M
    KADANOFF, LP
    TANG, C
    [J]. PHYSICAL REVIEW LETTERS, 1983, 50 (23) : 1870 - 1872
  • [5] ON PERIODIC AND NON-PERIODIC SPACE FILLINGS OF EM OBTAINED BY PROJECTION
    KRAMER, P
    NERI, R
    [J]. ACTA CRYSTALLOGRAPHICA SECTION A, 1984, 40 (SEP): : 580 - 587
  • [6] ACOUSTIC-WAVE PROPAGATION IN QUASIPERIODIC, INCOMMENSURATE, AND RANDOM-SYSTEMS
    LU, JP
    BIRMAN, JL
    [J]. PHYSICAL REVIEW B, 1988, 38 (12): : 8067 - 8074
  • [7] PROPERTIES OF ONE-DIMENSIONAL QUASI-LATTICES
    LU, JP
    ODAGAKI, T
    BIRMAN, JL
    [J]. PHYSICAL REVIEW B, 1986, 33 (07): : 4809 - 4817
  • [8] ACOUSTIC AND ELECTRONIC-PROPERTIES OF ONE-DIMENSIONAL QUASI-CRYSTALS
    NORI, F
    RODRIGUEZ, JP
    [J]. PHYSICAL REVIEW B, 1986, 34 (04): : 2207 - 2211
  • [9] RENORMALIZATION-GROUP STUDY OF FIBONACCI CHAINS
    WURTZ, D
    SCHNEIDER, T
    POLITI, A
    [J]. PHYSICS LETTERS A, 1988, 129 (02) : 88 - 92