PARAMETRICALLY EXCITED LINEAR NONCONSERVATIVE GYROSCOPIC SYSTEMS

被引:3
|
作者
VIDERMAN, Z [1 ]
RIMROTT, FPJ [1 ]
CLEGHORN, WL [1 ]
机构
[1] UNIV TORONTO,DEPT MECH ENGN,TORONTO M5S 1A1,ONTARIO,CANADA
来源
MECHANICS OF STRUCTURES AND MACHINES | 1994年 / 22卷 / 01期
关键词
Damping - Degrees of freedom (mechanics) - Numerical methods - Resonance - Spacecraft - Stability;
D O I
10.1080/08905459408905202
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
This paper presents an analytical method, based on the multiple scales method, for analyzing parametrically excited linear nonconservative gyroscopic systems having many degrees of freedom and distinct frequencies, where excitation and damping are small. Explicit first-order expressions for stability boundaries are obtained. Various resonances are treated. Some of these results are applied in stability analysis of asymmetric dual-spin spacecraft.
引用
收藏
页码:1 / 20
页数:20
相关论文
共 50 条
  • [1] STABILITY OF NONCONSERVATIVE LINEAR DISCRETE GYROSCOPIC SYSTEMS
    YANG, SM
    MOTE, CD
    JOURNAL OF SOUND AND VIBRATION, 1991, 147 (03) : 453 - 464
  • [2] STABILITY OF NONCONSERVATIVE LINEAR DISCRETE GYROSCOPIC SYSTEMS - COMMENT
    LUMIJARVI, J
    PRAMILA, A
    JOURNAL OF SOUND AND VIBRATION, 1995, 185 (05) : 891 - 894
  • [3] STOCHASTICALLY EXCITED LINEAR NONCONSERVATIVE SYSTEMS
    NAMACHCHIVAYA, NS
    TIEN, WM
    MECHANICS OF STRUCTURES AND MACHINES, 1990, 18 (04): : 459 - 481
  • [4] Existence/nonexistence of instability regions in a parametrically excited linear gyroscopic system
    Tan, Xing
    Chen, Weiting
    He, Jincheng
    Shao, Hanbo
    Wang, Tao
    Liang, Deli
    He, Huan
    APPLIED MATHEMATICAL MODELLING, 2022, 112 : 304 - 323
  • [5] Gyroscopic stabilization of nonconservative systems
    Kosov A.A.
    Journal of Applied and Industrial Mathematics, 2008, 2 (4) : 513 - 521
  • [6] Damping and gyroscopic effects on the stability of parametrically excited continuous rotor systems
    Alessandro De Felice
    Silvio Sorrentino
    Nonlinear Dynamics, 2021, 103 : 3529 - 3555
  • [7] Damping and gyroscopic effects on the stability of parametrically excited continuous rotor systems
    De Felice, Alessandro
    Sorrentino, Silvio
    NONLINEAR DYNAMICS, 2021, 103 (04) : 3529 - 3555
  • [8] ON STABILITY OF PARAMETRICALLY EXCITED LINEAR STOCHASTIC SYSTEMS
    Labou, M.
    INTERNATIONAL APPLIED MECHANICS, 2011, 46 (12) : 1440 - 1453
  • [9] Stability boundaries of a spinning rotor with parametrically excited gyroscopic system
    Pei, Yong-Chen
    European Journal of Mechanics, A/Solids, 1600, 28 (04): : 891 - 896
  • [10] Stability boundaries of a spinning rotor with parametrically excited gyroscopic system
    Pei Yong-Chen
    EUROPEAN JOURNAL OF MECHANICS A-SOLIDS, 2009, 28 (04) : 891 - 896