MAXIMAL VOLUME OF CONVEX BODIES WITH FEW VERTICES

被引:3
作者
KIND, B [1 ]
KLEINSCHMIDT, P [1 ]
机构
[1] RUHR UNIV,INST MATH,D-4630 BOCHUM,FED REP GER
关键词
D O I
10.1016/0097-3165(76)90056-X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:124 / 128
页数:5
相关论文
共 50 条
  • [41] APPROXIMABILITY OF CONVEX BODIES AND VOLUME ENTROPY IN HILBERT GEOMETRY
    Vernicos, Constantin
    PACIFIC JOURNAL OF MATHEMATICS, 2017, 287 (01) : 223 - 256
  • [42] Explicit excluded volume of cylindrically symmetric convex bodies
    Piastra, Marco
    Virga, Epifanio G.
    PHYSICAL REVIEW E, 2015, 91 (06):
  • [43] On determinants and the volume of random polytopes in isotropic convex bodies
    Pivovarov, Peter
    GEOMETRIAE DEDICATA, 2010, 149 (01) : 45 - 58
  • [44] Intrinsic and Dual Volume Deviations of Convex Bodies and Polytopes
    Besau, Florian
    Hoehner, Steven
    Kur, Gil
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2021, 2021 (22) : 17456 - 17513
  • [45] On maximal k-sections and related common transversals of convex bodies
    Makai, E
    Martini, H
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2004, 47 (02): : 246 - 256
  • [46] The topological structure of maximal lattice free convex bodies: The general case
    Barany, I
    Scarf, HE
    Shallcross, D
    MATHEMATICAL PROGRAMMING, 1998, 80 (01) : 1 - 15
  • [47] The topological structure of maximal lattice free convex bodies: The general case
    I. Bárány
    H. E. Scarf
    D. Shallcross
    Mathematical Programming, 1998, 80 : 1 - 15
  • [48] Feature recognition using combined convex and maximal volume decompositions
    Wang, Eric
    Kim, Yong Se
    Woo, Yoonhwan
    Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference 2005, Vol 3, Pts A and B, 2005, : 469 - 475
  • [49] Neighbourly polytopes with few vertices
    Devyatov, R. A.
    SBORNIK MATHEMATICS, 2011, 202 (10) : 1441 - 1462
  • [50] Equivelar Polyhedra with Few Vertices
    B. Datta
    N. Nilakantan
    Discrete & Computational Geometry, 2001, 26 : 429 - 461